Gimp Retinex for Enhancing Images from Microscopes

Gimp Retinex for Enhancing Images from Microscopes

Loading document ...
Page
of
Loading page ...

Author(s)

Author(s): Amelia Carolina Sparavigna

Download Full PDF Read Complete Article

DOI: 10.18483/ijSci.758 452 859 72-79 Volume 4 - Jun 2015

Abstract

We recently proposed in the International Journal of Sciences the use of GIMP, the GNU Image Manipulation Program, for enhancing the panoramic radiographic images. One of its tools, the Retinex filter, revealed itself quite suitable for detecting weak features hidden in the shadows of these radiographic images. Here we show that this filter, besides being relevant for medical and biologic imaging, can be helpful for enhancing the images coming from microscopy techniques related to other scientific investigations.

Keywords

GIMP Retinex, Image Processing, Medical Imaging, Biologic Imaging, Panoramic Radiography, Radiographic Imaging, Kerr Microscopy, Magneto-Optic Kerr Effect, Polarized Light Microscopy, Liquid Crystals, Scanning Electron Microscopy

References

  1. Sparavigna, A.C. (2015). An image processing approach based on Gnu Image Manipulation Program Gimp to the panoramic radiography, International Journal of Sciences 4(5), pp. 57-67.
  2. Barnard, K., & Funt, B. (1999). Investigations into multi-scale Retinex, in Colour Imaging: Vision and Technology, L. MacDonald, Ed. and M. Ronnier Luo. Ed., John Wiley and Sons, pp. 9-17. ISBN: 978-0-471-98531-0
  3. Zhixi Bian, & Yan Zhang (2002). Retinex image enhancement techniques: Algorithm, application and advantages, EE264 final project report for Image Processing and Reconstruction.
  4. Jobson, D.J., Rahman, Z., & Woodell, G.A. (1997). A Multi-Scale Retinex for bridging the gap between colour images and the human observation of scenes, IEEE Transactions on Image Processing 6(7), pp. 965-976. DOI:10.1109/83.597272
  5. Land, E.H. (1986). An alternative technique for the computation of the designator in the retinex theory of color vision, Proc. Nat. Acad, Sci. 83, pp. 3078-3080. PMCID: PMC323455 http://dx.doi.org/10.1073/pnas.83.10.3078
  6. Land, E.H. (1983). Recent advances in Retinex theory and some implications for cortical computations, Proc. Nat. Acad. Sci. 80, pp. 5163-5169. PMCID: PMC384211 http://dx.doi.org/10.1073/pnas.80.16.5163
  7. Land, E.H. (1986). Recent advances in Retinex theory, Vis. Res. 26, pp. 7-21. DOI:10.1016/0042-6989(86)90067-2
  8. Land, E.H. (1959). Experiments in color vision, Scientific American, May Issue, pp. 285-298.
  9. Land, E.H. (1959). Color vision and the natural image, Proc. of the National Academy of Sciences 45(1), pp. 115–129. PMCID: PMC222521
  10. Petro, A.B., Sbert, C., & Morel, J.M. (2014). Multiscale Retinex. Image Processing On Line, pp. 71-88. DOI:10.5201/ipol.2014.107
  11. Jobson, J., Rahman, Z., & Woodell, G.A. (1997). Properties and performance of a center/surround Retinex, Image Processing IEEE Transactions on 6(3), pp. 451-462. DOI:10.1109/83.557356
  12. Meylan, L., & Süsstrunk, S. (2004). Color image enhancement using a Retinex-based adaptive filter. In Conference on Colour in Graphics, Imaging, and Vision 2004(1), pp. 359-363. Society for Imaging Science and Technology.
  13. Liqian Wang, Liang Xiao, Hongyi Liu, & Zhihui Wei (2014). Variational Bayesian Method for Retinex, Image Processing, IEEE Transactions on 23(8), pp. 3381-3396, DOI:10.1109/TIP.2014.2324813
  14. Solomon, R.W. (2009), Free and open source software for the manipulation of digital images, American Journal of Roentgenology 192(6), pp. W330-W334. http://dx.doi.org/10.2214/ajr.08.2190
  15. Barbieri, L. (2013). Human retina and digital images processing in radiology, at the address www.lanfrancobarbieri.com/home.html
  16. Halouska, S., Chacon, O., Fenton, R.J., Zinniel, D.K., Barletta, R.G., & Powers, R. (2007). Use of NMR metabolomics to analyze the targets of d-cycloserine in mycobacteria: Role of d-alanine racemase, J. Proteome Res. 6(12), pp. 4608–4614. DOI:10.1021/pr0704332
  17. Bernut, A., Le Moigne, V., Lesne, T., Lutfalla, G., Herrmann, J.-L., & Kremer, L. (2014), In vivo assessment of drug efficacy against mycobacterium abscessus using the embryonic zebrafish test system, Antimicrob. Agents Chemother. 58(7), pp. 4054-4063. http://dx.doi.org/10.1128/aac.00142-14
  18. Bernut, A., Herrmann, J.-L., Kissa, K., Dubremetz, J.-F., Gaillard, J.-L., Lutfalla, G., & Kremer. L. (2014). Mycobacterium abscessus cording prevents phagocytosis and promotes abscess formation, Proc Natl Acad Sci U S A. PNAS Plus 111(10), pp. E943–E952. DOI:10.1073/pnas.1321390111, PMCID: PMC3956181 http://dx.doi.org/10.1073/pnas.1321390111
  19. Montrucchio, B., Sparavigna, A., & Strigazzi, A. (1998). A new image processing method for enhancing the detection sensitivity of smooth transitions in liquid crystals, Liquid Crystals 24(6), pp. 841-852. DOI:10.1080/026782998206669
  20. Sparavigna, A., Mello, A., & Montrucchio, B. (2007). Fan-shaped, toric and spherulitic textures of mesomorphic oxadiazoles, Phase Transitions, 80(9), pp. 987-998. DOI:10.1080/01411590701466766
  21. Zvezdin, A.K., & Kotov V.A. (1997). Modern magnetooptics and magnetooptical materials. Institute of Physics Publishing. ISBN 9780750303620 http://dx.doi.org/10.1201/9781420050844
  22. Avloni, J., Ouyang, M., Florio, L., Henn, A.R., & Sparavigna, A. (2007). Shielding effectiveness evaluation of metallized and polypyrrole-coated fabrics, Journal of Thermoplastic Composite Materials, 20(3), pp. 241-254. DOI:0.1177/0892705707076718

Cite this Article:

  • BibTex
  • RIS
  • APA
  • Harvard
  • IEEE
  • MLA
  • Vancouver
  • Chicago

International Journal of Sciences is Open Access Journal.
This article is licensed under a Creative Commons Attribution 4.0 International (CC BY 4.0) License.
Author(s) retain the copyrights of this article, though, publication rights are with Alkhaer Publications.

Search Articles

Issue April 2019

Volume 8, April 2019


Table of Contents


Order Print Copy

World-wide Delivery is FREE

Share this Issue with Friends:


Submit your Paper