A Historical Discussion of Angular Momentum and its Euler Equation

A Historical Discussion of Angular Momentum and its Euler Equation

Loading document ...
Page
of
Loading page ...

Author(s)

Author(s): Amelia Carolina Sparavigna

Download Full PDF Read Complete Article

DOI: 10.18483/ijSci.786 383 1188 34-38 Volume 4 - Jul 2015

Abstract

We propose a discussion of angular momentum and its Euler equation, with the aim of giving a short outline of their history. This outline can be useful for teaching purposes too, to amend some problems that students can have in learning this important physical quantity.

Keywords

History of Physics, History of Science, Physics Classroom, Euler’s Laws

References

  1. Kleinert, H. (2009). Path Integrals in Quantum Mechanics, Statistics, Polymer Physics, and Financial Markets, World Scientific. ISBN: 978-981-4273-56-5
  2. Newton, I. (1803). Axioms; or Laws of Motion, Law I. in The Mathematical Principles of Natural Philosophy. Andrew Motte translator. H. D. Symonds, London.
  3. Oliver, V. (2002). History of the Top. Web page available at www.spintastics.com/ SSThisttop.html
  4. Plato (1969). Plato in Twelve Volumes, Vols. 5 & 6. Paul Shorey translator. Cambridge, MA, Harvard University Press; London, William Heinemann Ltd. See Chapter 4, 436.
  5. Saint Basil (1895). Hexaemeron, Jackson Blomfield translator; revised and edited by Kevin Knight. In From Nicene and Post-Nicene Fathers, Second Series, Vol. 8, Philip Schaff and Henry Wace Editors. Buffalo, NY, Christian Literature Publishing Co.
  6. Gabbey, A. (1990). The Case of Mechanics: One Revolution or Many? In Reappraisals of the Scientific Revolution, David C. Lindberg and Robert S. Westman Editors, Cambridge University Press, pp. 493-528. ISBN: 9780521348041
  7. Vv. Aa. (2015). Angular Momentum, in Wikipedia and references therein.
  8. Andrés, G. (1790). Dell'Origine, Progressi e Stato Attuale d'Ogni Letteratura: Della Meccanica, Volume 4, Stamperia Reale. Google e-book.
  9. Caparrini, S.; Fraser, C. (2013). Mechanics in the Eighteenth Century. In The Oxford Handbook of the History of Physics, Jed Z. Buchwald and Robert Fox Editors, OUP, Oxford, pp. 358-405. ISBN: 9780199696253
  10. Borrelli, A. (2011). Angular Momentum Between Physics and Mathematics. In Mathematics Meets Physics, Karl-Heinz Schlote and Martina Schneider Editors, Verlag Harri Deutsch, Frankfurt a.M., pp. 395-440. ISBN: 978-3-8171-1844-1
  11. McGill, D.J.; King, W.W. (1995). Engineering Mechanics, An Introduction to Dynamics, PWS Publishing Company. ISBN: 0-534-93399-8
  12. Crowe, M.J. (1967). A History of Vector Analysis: The Evolution of the Idea of a Vectorial System, Courier Corporation. ISBN: 9780486679105
  13. Hutter, K. (2014). Continuum Mechanics in Environmental Sciences and Geophysics, Springer. ISBN: 978-3-7091-2600-4, DOI: 10.1007/978-3-7091-2600-4
  14. Romano, A. (2012). Classical Mechanics with Mathematica®, Springer Science & Business Media, Birkhäuser Basel. ISBN: 978-0-8176-8352-8, DOI: 10.1007/978-0-8176-8352-8
  15. Maggi, G.A. (1912). Dinamica Fisica: Lezioni sulle Leggi Generali del Movimento dei Corpi Naturali, E. Spoerri, Pisa.
  16. Masetti, G.B. (1827). Note ed Aggiunte agli Elementi di Meccanica e d'Idraulica del Professore Giuseppe Venturoli, Volume 2, Tipografia Cardinali e Frulli, Bologna. Google e-book.
  17. Venturoli, G. (1822). Elements of the Theory of Mechanics, Translated from the Italian by D. Cresswell, J. Nicholson & Son, Cambridge. Google e-book.
  18. Vv. Aa. (1784). Memorie di Matematica e Fisica della Società Italiana, Volume 2, 1784, Dionigi Ramanzini, Bologna. See Cap.3, p. 467. Google e-book.
  19. Wildbore, C. (1790). On Spherical Motion, communicated by Earl Stanhope, on 24 June 1790 to the Philosophical Transactions of the Royal Society of London, Volume 80, W. Bowyer and J. Nichols for Lockyer Davis, printer to the Royal Society. Google e-book. http://dx.doi.org/10.1098/rstl.1790.0028
  20. Arnol'd, V.I. (1989). Mathematical Methods of Classical Mechanics, Springer Science & Business Media. ISBN: 978-1-4757-2063-1, DOI: 10.1007/978-1-4757-2063-1
  21. Youschkevitch, A.P.; Grigorian, A.T. (2008). Segner, János - András (Johann Andreas von), in Complete Dictionary of Scientific Biography, Charles Scribner's Sons. ISBN: 0-684-31559-9
  22. Reynolds, T.S. (2002). Stronger Than a Hundred Men: A History of the Vertical Water Wheel, JHU Press. ISBN: 9780801872488
  23. Walton, W. (1842). A Collection of Problems in Illustration of the Principles of Theoretical Mechanics, Cambridge, W.P. Grant.
  24. Vv. Aa. (1779). Vita Admodvm Reverendi Ac Magnifici Viri Iosephi Stepling, Sumptibus Caes. Reg. Scholae Normalis. Typis, per Ioannem Adamum Hagen.
  25. Vv. Aa. (2015). Flywheel, in Wikipedia and references therein.

Cite this Article:

  • BibTex
  • RIS
  • APA
  • Harvard
  • IEEE
  • MLA
  • Vancouver
  • Chicago

International Journal of Sciences is Open Access Journal.
This article is licensed under a Creative Commons Attribution 4.0 International (CC BY 4.0) License.
Author(s) retain the copyrights of this article, though, publication rights are with Alkhaer Publications.

Search Articles

Issue October 2019

Volume 8, October 2019


Table of Contents


Order Print Copy

World-wide Delivery is FREE

Share this Issue with Friends:


Submit your Paper