Alpha-glucosidases from Non-hematophagous Organisms Crystallize Heme in Vitro

Alpha-glucosidases from Non-hematophagous Organisms Crystallize Heme in Vitro

Loading document ...
Page
of
Loading page ...

Author(s)

Author(s): Marilvia Dansa de Alencar, Lígia Souza Ferreira, Gabriela Calegário, Flávia Borges Mury

Download Full PDF Read Complete Article

DOI: 10.18483/ijSci.791 346 1037 24-33 Volume 4 - Aug 2015

Abstract

Hemozoin (Hz), a heme crystal first known as a malaria pigment, reduces heme toxicity to hematophagous organisms such as protozoans, worms, and insects. The mechanism of Hz synthesis remains poorly understood, but studies on the blood-sucking insect Rhodnius prolixus indicate the involvement of an α-glucosidase enzyme. The objective of this study was to test the hypothesis that α-glucosidases from other organisms also have the ability to form Hz in vitro. This hypothesis was tested using protein extracts from non-hematophagous insects and non-insect organisms. Our results indicate that protein extracts from several sources have the potential to crystallize heme in vitro. This activity is likely associated with α-glucosidases. Thus, these enzymes seem to have the secondary capacity of detoxifying heme even in nonhematophagous organisms. This latent function may represent a crucial pre-adaptive evolutionary step in the adoption of hematophagy in hemoparasites.

Keywords

Hemozoin, glycoside-hydrolases, heme biocrystallization

References

  1. Ashford DA, Smith WA, Douglas AE (2000). Living on a high sugar diet: the fate of sucrose ingested by a phloem-feeding insect, the pea aphid Acyrthosiphon pisum, J. Insect Physiol. 46:335–341. http://dx.doi.org/10.1016/s0022-1910(99)00186-9
  2. Auricchio F, Bruni CB, Sica V (1968). Further purification and characterization of the acid alphaglucosidase, Biochem. J. 108:161-7. http://dx.doi.org/10.1042/bj1080161
  3. Bhatia Y, Mishra S, Bisaria VS (2002). Microbial β-glucosidases: Cloning, properties and applications, Crit.Rev.Biotechnol. 22: 375-407. http://dx.doi.org/10.1080/07388550290789568
  4. Chen MM, Shi L, Sullivan JRDJ (2001). Haemoproteus and Schistosoma synthesize haem polymers similar to Plasmodium hemozoin and betahematin. Mol. Biochem. Parasitol. 113:1-8. http://dx.doi.org/10.1016/s0166-6851(00)00365-0
  5. Coan C, DiCarlo R (1990). Effect of diethyl pyrocarbonate modification on the calcium binding mechanism of the sarcoplasmic reticulum ATPase, J. Biol. Chem. 265: 5376-84.
  6. Corrêa-Soares JB, Menezes D, Vannier-Santos MA, Ferreira-Pereira A, Almeida GT, Venancio TM, Verjovski-Almeida S, Zishiri VK, Kuter D, Hunter R, Egan TJ, Oliveira MF (2009). Interference with hemozoin formation represents an important mechanism of schistosomicidal action of antimalarial quinoline methanols, PLoS Negl. Trop. Dis. 3:e477. http://dx.doi.org/10.1371/journal.pntd.0000477
  7. Corrêa-Soares JB, Maya-Monteiro CM, Bittencourt-Cunha PR, Atella GC, Lara FA, d'Avila JC, Menezes D, Vannier-Santos MA, Oliveira PL, Egan TJ, Oliveira MF (2007). Extracellular lipid droplets promote hemozoin crystallization in the gut of the blood fluke Schistosoma mansoni, FEBS Lett. 581:1742-50. http://dx.doi.org/10.1016/j.febslet.2007.03.054
  8. Damasceno-Sa JC, Carneiro CNB, Damatta RA, Samuels RI, Terra WR, Silva CP (2007). Biphasic perimicrovillar membrane production following feeding by previously starved Dysdercus peruvianus (Hemiptera: Pyrrhocoridae), J.Insect Physiol. 53:592-600. http://dx.doi.org/10.1016/j.jinsphys.2007.02.017
  9. Ferreira C, Ribeiro AF, Garcia ES & Terra WR (1988). Digestive enzymes trapped between and associated with the doublé plasma membranes of Rhodnius prolixus posterior midgut cells, Insect Biochem. Mol. Biol. 18:521-530. http://dx.doi.org/10.1016/j.jinsphys.2007.02.017
  10. Fialho MCQ, Terra WR, Moreira NR, Zanuncio JC, Serrão JE (2013). Ultrastructure and immunolocalization of digestive enzymes in the midgut of Podisus nigrispinus (Heteroptera: Pentatomidae), Arthropod Struct. Dev. 42:277 – 285. http://dx.doi.org/10.1016/j.asd.2013.03.002
  11. Fitch CD, Cai GZ, Chen YF, Shoemaker JD (1999). Involvement of lipids in ferriprotoporphyrin IX polymerization in malaria, Biochim. Biophys. Acta 1454: 31-37. http://dx.doi.org/10.1016/s0925-4439(99)00017-4
  12. Fonseca FV, Silva JR, Samuels RI, DaMatta RA, Terra WR, Silva CP (2010). Purification and partial characterization of a midgut membrane-bound α-glucosidase from Quesada gigas (Hemiptera: Cicadidae), Comp. Biochem. Physiol. 155B: 20–25. http://dx.doi.org/10.1016/j.cbpb.2009.09.004
  13. Ghadamyari M, Hosseininaveh V, Sharifi M (2010). Partial biochemical characterization of α- and β-glucosidases of lesser mulberry pyralid, Glyphodes pyloalis Walker (Lep.: Pyralidae), C. R. Biol. 333: 197–204. http://dx.doi.org/10.1016/j.crvi.2009.12.011
  14. Hoang AN, Ncokazi KK, de Villiers KA, Wright DW, Egan TJ (2010). Crystallization of synthetic haemozoin (β-haematin) nucleated at the surface of lipid particles, Dalton T. 39: 1235-1244. http://dx.doi.org/10.1039/b914359a
  15. Jani D, Nagarkatti R, Beatty W, Angel R, Slebodnick C, Andersen J, Kumar S, Rathore D (2008). HDP – a novel heme detoxification protein from the malaria parasite, PLoS Pathog. 4: e1000053. http://dx.doi.org/10.1371/journal.ppat.1000053
  16. Kapishnikova S, Weinera A, Shimonib E, Guttmannc P, Schneiderc G, Dahan-Pasternakd N, Dzikowskid R, Leiserowitza L, Elbauma M (2012). Oriented nucleation of hemozoin at the digestive vacuole membrane in Plasmodium falciparum, P. Natl. Acad. Sci. USA 109: 11188–11193.
  17. Kubota M, Tsuji M, Nishimoto M, Wongchawalit J, Okuyama M, Mori H, Matsui H, Surarit R, Svsti J, Kimura A, Chiba S (2004). Localization of α-Glucosidases I, II and III in Organs of European 398 Honeybees, Apis mellifera L., and the Origin of α-Glucosidase in Honey, Biosci. Biotech. Bioch. 68: 2346-2352. http://dx.doi.org/10.1271/bbb.68.2346
  18. Mehrabadi M, Bandani AR. Secretion and Formation of Perimicrovillar Membrane in the Digestive System of the Sunn Pest, Eurygaster integriceps (Hemiptera: Scutelleridae) in Response to Feeding, Arch.Insect Biochem. 78 (2011) 190–200. http://dx.doi.org/10.1002/arch.20452
  19. Mury FB, Silva, JR, Ferreira LS, Ferreira BS, Souza-Filho GA, Souza-Neto JA, Ribolla PEM, Silva CP, Nascimento VV, Machado OLT, Berbert-Molina MA, DansaPetretski M (2009). Alpha-glucosidase forms hemozoin in a blood-sucking bug: an evolutionary history, PLoS ONE. 4: e6966. http://dx.doi.org/10.1371/journal.pone.0006966
  20. Oliveira MF, Gandara AC, Braga CM, Silva JR, Mury FB, Dansa-Petretski M, Menezes D, Vannier-Santos MA, Oliveira PL (2007). Heme crystallization in the midgut of triatomine insects, Comp. Biochem. Physiol. Part C: Toxicol. Pharmac. 146:168-74. http://dx.doi.org/10.1016/j.cbpc.2006.12.007
  21. Oliveira MF, Gandara AC, Braga CM, Silva JR, Mury JB, Dansa-Petretski M, Menezes D, Vannier-Santos MA, Oliveira PL (2007). Heme crystallization in the midgut of triatomine insects, Comp. Biochem. Physiol. Part C: Toxicol. Pharmacol. 146: 168-74. http://dx.doi.org/10.1016/j.cbpc.2006.12.007
  22. Oliveira MF, d’ Avila JC, Torres CR, Oliveira PL, Tempone AJ, Rumjanek FD, Braga CM, Silva JR, Dansa-Petretski M, Oliveira MA, de Souza W, Ferreira ST (2000). Haemozoin in Schistosoma mansoni. Mol. Biochem. Parasitol. 111: 217–221. http://dx.doi.org/10.1016/s0166-6851(00)00299-1
  23. Oliveira MF, Silva JR, Dansa-Petretski M, de Souza W, Lins U, Braga CMS, Masuda H, Oliveira PL (1999). Haem detoxification by an insect, Nature, 400: 517–518. http://dx.doi.org/10.1038/22910
  24. Ridley DG, Dorn A, Vippagunta SR, Vennerstrom JL (1997). Haematin (haem) polymerization and its inhibition by chloroquine antimalarials, Ann. Trop. Med. Parasitol. 91: 559-566.
  25. Salvucci ME (2000). Effect of the alpha-glucosidase inhibitor, bromoconduritol, on carbohydrate metabolism in the silverleaf whitefly, Bemisia argentifolii, Arch. Insect Biochem. 45 (2000) 117-28. http://dx.doi.org/10.1002/1520-6327(200011)45:3%3C117::aid-arch3%3E3.0.co;2-t
  26. Silva-Filha MH, Nielsen-LeRoux C, Jean-François C (1999). Identification of the receptor for Bacillus sphaericus crystal toxin in the brush border membrane of the mosquito Culex pipiens (Diptera: Culicidae), Insect Biochem. Mol. Biol. 29: 711-721. http://dx.doi.org/10.1016/s0965-1748(99)00047-8
  27. Silva JR, Mury FB, Oliveira MF, Oliveira PL, Silva CP, Dansa-Petretski M (2007). Perimicrovillar membranes promote hemozoin formation into Rhodnius prolixus midgut, Insect Biochem. Mol. Biol. 37: 523-531. http://dx.doi.org/10.1016/j.ibmb.2007.01.001
  28. Silva CP, Ribeiro AF, Gulbenkian S & Terra WR (1995). Organization, origin and function of the outer microvilar (perimicrovilar) membranes of Dysdercus peruvianus (Hemiptera) midgut cells, J. Insect. Physiol. 41: 1093-1103. http://dx.doi.org/10.1016/0022-1910(95)00066-4
  29. Slater AF, Cerami A (1992). Inhibition by choroquine of a novel haem polymerase enzyme and activity in malaria trophozoites. Nature, 355: 167–169. http://dx.doi.org/10.1038/355167a0
  30. Slater AFG, Swiggard WJ, Orton BR, Flitter WD, Goldberg E, Cerami A & Henderson GB (1991). An iron-carboxylate bond links the heme units of malaria pigment, P. Natl. Acad. Sci. USA 88: 325-329. http://dx.doi.org/10.1073/pnas.88.2.325
  31. Smith JD, Tang BC, Robinson AS (2004). Protein disulfide isomerase, but not binding protein, overexpression enhances secretion of a non-disulfide-bonded protein in yeast, Biotechnol. Bioeng. 85: 340-50. http://dx.doi.org/10.1002/bit.10853
  32. Smith PR, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provezano MD, Fujimoto EK, Goeke NM, Olson BJ, Klenk DC (1985). Measurements of protein using bicinchonicacid, Anal. Biochem. 150: 76–85.
  33. Souza-Neto JA, Machado FP, Lima JB, Valle D, Ribolla PEM (2007). Sugar digestion in mosquitoes: Identification and characterization of three midgut α-glucosidases of the neotropical malaria vector Anopheles aquasalis (Diptera:Culicidae), Comp. Biochem. Physiol. 147: 993 – 1000. http://dx.doi.org/10.1016/j.cbpa.2007.03.008
  34. Stiebler R, Soares JBR, Timm BL, Silva JR, Mury FB, Dansa-Petretski M, Oliveira MF (2011). On the mechanisms involved in biological heme crystallization, J.Bioenerg. Biomemb. 43: 93-99. http://dx.doi.org/10.1007/s10863-011-9335-x
  35. Stiebler R, Timm BL, Oliveira PL, Hearne GR, Egan TJ, Oliveira MF (2010). On the physicochemical requeriments of hemozoin formation promoted by the perimicrovillar membranes in Rhodnius prolixus midgut, Insect Biochem. Mol. Biol. 40: 284-292. http://dx.doi.org/10.1016/j.ibmb.2009.12.013
  36. Sullivan JRDJ, Gluzman IY & Goldberg DE (1996). Haemozoin formation mediated by histidine-rich proteins, Science 271: 219-221. http://dx.doi.org/10.1126/science.271.5246.219
  37. Terra WR, Ferreira C (1994). Insect digestive enzymes: properties, compartmentalization and function, Comp. Biochem. Physiol. 109B: 1-62.
  38. Terra WR, Terra IC, Ferreira C, de Bianchi AG (1979). Carbodiimide-reactive carboxyl groups at the active site of an insect midgut trehalase, Biochim. Biophys. Acta 571: 79–85. http://dx.doi.org/10.1016/0005-2744(79)90227-4
  39. Torre-Bouscoulet ME, López-Romero E, Balcázar-Orozco R, Calvo-Méndez C, Flores-Carreón A (2005). Partial purification and biochemical characterization of a soluble alpha-glucosidase IIlike activity from Candida albicans, FEMS Microbiol. Lett. 251: 355. http://dx.doi.org/10.1016/j.femsle.2004.05.033
  40. Vale VF, Moreira BH, Pereira MH, Genta FA, Gontijo NF (2012). Carbohydrate digestion in Lutzomyia longipalpis' larvae (Diptera - Psychodidae), J. Insect Physiol. 58: 314-24. http://dx.doi.org/10.1016/j.jinsphys.2012.07.005
  41. Watanabe S, Kakudo A, Ohta M, Mita K, Fujiyama K, Inumaru S (2013). Molecular cloning and characterization of the α-glucosidase II from Bombyx mori and Spodoptera frugiperda, Insect Biochem. Mol. Biol. 43: 319- 327. http://dx.doi.org/10.1016/j.ibmb.2013.01.005
  42. Withers N (2010). Liesegang rings: nanoparticles ring the changes, Nat. Chem. 2: 160. http://dx.doi.org/10.1038/nchem.568
  43. Wolf B, Michelin-Lausarot P, Lesnaw JA, Reichmann ME (1970). Preparation of polymeric protein markers and an investigation of their behavior in sodium dodecyl sulfatepolyacrylamide gel electrophoresis, Biochim. Biophys. Acta 200: 180. http://dx.doi.org/10.1016/0005-2795(70)90060-7
  44. Zechel DL & Withers SG (2000). Glycosidase Mechanisms: Anatomy of a Finely Tuned Catalyst, Accounts Chem Res. 33: 11-18. http://dx.doi.org/10.1002/chin.200015237
  45. Zibaee A, Bandani AR, Ramzi S (2009). Enzymatic properties of α- and β- glocusidases extracted from midgut and salivary glands of rice striped stem borer, Chilo suppressalis Walker (Lepidoptera: Pyralidae), C. R. Biol. 332: 633–641. http://dx.doi.org/10.1016/j.crvi.2009.02.009

Cite this Article:

International Journal of Sciences is Open Access Journal.
This article is licensed under a Creative Commons Attribution 4.0 International (CC BY 4.0) License.
Author(s) retain the copyrights of this article, though, publication rights are with Alkhaer Publications.

Search Articles

Issue June 2024

Volume 13, June 2024


Table of Contents



World-wide Delivery is FREE

Share this Issue with Friends:


Submit your Paper