Rapid Sonochemical Synthesis and Characterisation of Copper Oxide Nanoparticles from Schweizer's Reagent

Rapid Sonochemical Synthesis and Characterisation of Copper Oxide Nanoparticles from Schweizer's Reagent

Loading document ...
Loading page ...


Author(s): Gerrard Eddy Jai Poinern, Huu Dang, Ravi Krishna Brundavanam, Derek Fawcett

Download Full PDF Read Complete Article

DOI: 10.18483/ijSci.863 601 1318 23-29 Volume 4 - Nov 2015


The present work reports the results of a study that investigated a sonochemical approach to synthesis copper oxide nanostructures from tetraamminediaquacopper dihydroxide. (Schweizer's Reagent). Ultrasonic irradiation ranging from 0 to 400 W over time periods ranging from 5 min to 15 min were performed on Schweizer's reagent. UV-visible spectroscopy has shown that copper nanoparticles are initially formed but soon oxidize in the ultrasonically treated reagent. Formation of copper oxide nanostructures was indicated by the original blue colour of the reagent turning brown at particular power settings. XRD analysis confirmed the presence of both copper (I) oxide (Cu2O) and copper (II) oxide (CuO) at the end of the ultrasonic treatment. SEM microscopy revealed particles sizes ranged from 200 nm up to 1µm and were predominantly granular and agglomerated in nature.


Copper Oxide, Nanostructures, Sonochemical Synthesis, Ultrasounds


  1. Filipič, G., and U. Cvelbar. 2012. Copper oxide nanowires: a review of growth. Nanotechnology. 23 (19), 194001.
  2. Sunkara, M. K., Pendyala, C., Cummins, D., Meduri, P., Jasinski, J., Kumar, V., Russell, H. B., Clark, E.L., Kim, J. H. 2011. Inorganic nanowires: a perspective about their role in energy conversion and storage applications. J. Phys. D: Appl. Phys. 44: 174032, 1-9.
  3. Zhang, J., Liu, J., Peng, Q., Wang, X., Li, Y. 2006. Nearly mono-dispersed Cu2O and CuO nanospheres: preparation and applications for sensitive gas sensors. Chem. Mater. 18(4): 867-871.
  4. Zhang, X., Wang, G., Liu, X., Wu, J., Li, M., Gu, J., Liu, H., Fang, B. 2008. Different CuO nanostructures: synthesis, characterisation, and applications for glucose sensors. J. Am. Chem. C, 112(43): 16845-16849.
  5. Cvelbar, U.K., Ostrikov, K., Drenik, A., Mozetic, M. 2008. Nanowire sensor response to reactive gas environment. Applied Physics Letters. 92:133505.
  6. Meyyappan, M. 2009. Catalyzed chemical vapor deposition of one-dimensional nanostructures and their applications. Progress in Crystal Growth and Characterization of Materials 55 (1–2): 1-21.
  7. Akimov, Y.A, Ostrikov, K., Li, E.P. 2009. Surface Plasmon Enhancement of Optical Absorption in Thin-Film Silicon Solar Cells” Plasmonics 4(2):107-113.
  8. Seo, D.H., Rider, A.E., Arulsamy, A.D., Levchenko, I., Ostrikov, K. 2010. Increased size selectivity of Si quantum dots on SiC at low substrate temperatures: An ion-assisted self-organization approach. Journal of Applied Physics. 107: 024313.
  9. Wang, Y., Shen, R., Jin, X., Zhu, P., Ye, Y., Hu, Y. 2011. Formation of CuO nanowires by thermal annealing copper film deposited on Ti/Si substrate." Applied Surface Science no. 258 (1):201-206. doi: http://dx.doi.org/10.1016/j.apsusc.2011.08.031.
  10. Yuhas, B.D, Yang, P. 2009. Nanowire-Based All-Oxide Solar Cells. Journal of the American Chemical Society 131(10): 3756-3761.doi 10.1021/ja8095575.
  11. Raksa, P., Nilphai, S., Gardchareon, A., Choopun, S. 2009. Copper oxide thin film and nanowire as a barrier in ZnO dye-sensitized solar cells. Thin Solid Films. 517 (17): 4741-4744.
  12. Zappa, D., Comini, E., Zamani, R., Arbiol, J. Morante, R., Sberveglieri, G. 2013. Preparation of copper oxide nanowire-based conductometric chemical sensors. Sensors and Actuators B: Chemical. 182: 7-15. doi: http://dx.doi.org/10.1016/j.snb.2013.02.076.
  13. Hoa, N. D., Quy, N.V., Jung, H., Kim, D., Kim, H., Hong, S.K. 2010. Synthesis of porous CuO nanowires and its application to hydrogen detection. Sensors and Actuators B: Chemical. 146 (1): 266-272. doi: http://dx.doi.org/10.1016/j.snb.2010.02.058.
  14. Hsu, Y.K., Yu, C.H., Lin, H.H., Chen, Y.C., Lin. Y.G. 2013. Template synthesis of copper oxide nanowires for photo-electrochemical hydrogen generation. Journal of Electro-analytical Chemistry. 704: 19-23. doi: http://dx.doi.org/10.1016/j.jelechem.2013.06.008.
  15. Yunzhe, F., Rao, P.M., Kim, D.R., Zheng, X. 2011. Methane oxidation over catalytic copper oxides nanowires. Proceedings of the Combustion Institute. 33 (2): 3169-3175. doi: http://dx.doi.org/10.1016/j.proci.2010.05.017.
  16. Ethiraj, A.S., Kang, D.J., 2012. Synthesis and characterisation of CuO nanowires by a simple wet chemical method. Nanoscale Research letters. 7(70): 1-5
  17. Wang, W., Zhuang, Y., Li, L. 2008. Structure and size effect of CuO nanowires prepared by low temperature solid-phase process. Mater. Lett. 62(10-11): 1724-1726.
  18. Chen, Z., Cvelbar, U., Mozetiˇc, M., He, J., Sunkara, M. K. 2008. Long range ordering of oxygen-vacancy planes in α-FE2O3 nanowires and nanobelts. Chem. Mater. 20 3224-3228.
  19. Shin, H.S., Song, J.Y., Yu, J. 2009. Templated-assisted electrochemical synthesis of cuprous oxide nanowires. Mater. Lett. 63: 397-399.
  20. Li, C., Yin, Y., Hou, H., Fan, N., Yuan, F., Shi, Y., Meng, Q. 2010. Preparation and characterisation of Cu(OH)2 and CuO nanowires by the coupling route of microemulsion with homogenous precipitation. Solid State Commun. 150: 585-589.
  21. Poinern, G.E.J., Dang, H., Brundavanam, R.K., Fawcett, D. 2014.
  22. Vertically aligned CuO nanometre scale wires synthesized by thermal oxidation in atmospheric air. International Journal of Science. 3 (7): 43-50.
  23. Hansen, B.J, Lu, G., Chen, J. 2008. Direct Oxidation Growth of CuO Nanowires from Copper-Containing Substrates, Journal of Nanomaterials. Article ID 830474, 1-11.
  24. Yasui, K. Fundamentals of Acoustic Cavitation and Sonochemistry: In Theoretical and Experimental Sonochemistry Involving Inorganic Systems. (Ed) Pankaj and Ashokkumar. (Pub) Springer Dordrecht Heidelberg London New York. doi: 10.1007/978-90-481-3887-6
  25. Khatoon, U.T., Rao, N.G., Mohan, M.K. 2013. Synthesis and characterisation of copper nanoparticles by chemical reduction method. Proc. International conference on Advanced Nanomaterials & Emerging Engineering Technologies (ICANMEET-2013), New Delhi, India.
  26. Banejee, S. and Chakravorty, D. 2000. Optical absorption by nanoparticles of Cu2O. Europhysics Letter. 52 (4): 468-473.
  27. Nakamoto, K. 1978. Infrared and Raman Spectra of Inorganic and Coordination Compounds, Wiley, New York, pp. 103-110.
  28. Serna, C.J., White, J.L., Hem, S.L. 1977. Anion-Aluminum Hydroxide Interactions. Soil Sci. Soc. Am. J. 42: 1009-1013. http://www.chemicalbook.com/SpectrumEN_7758-99-8_IR1.htm
  29. Danilchenko, S.N., Kukharenko, O.G., Moseke, C., Protsenko, I.Y., Sukhodub, L.F., Sulkio-Cleff, B. 2002. Determination of the bone mineral crystallite size and lattice strain from diffraction line broadening. Crystal. Res. Technol. 37 (11): 1234-1240.
  30. Klug, H.P., Alexander, L.E. 1974. X-ray diffraction procedures for polycrystallite and amorphous materials. 2nd edition. Wiley, New York, USA.

Cite this Article:

International Journal of Sciences is Open Access Journal.
This article is licensed under a Creative Commons Attribution 4.0 International (CC BY 4.0) License.
Author(s) retain the copyrights of this article, though, publication rights are with Alkhaer Publications.

Search Articles

Issue June 2023

Volume 12, June 2023

Table of Contents

World-wide Delivery is FREE

Share this Issue with Friends:

Submit your Paper