info
$50 Off in Publication fee for August 2017 Issue Only, Pay $100 instead of $150 for Single article online publication fee.

Relations Between Tsallis and Kaniadakis Entropic Measures and Rigorous Discussion of Conditional Kaniadakis Entropy

Relations Between Tsallis and Kaniadakis Entropic Measures and Rigorous Discussion of Conditional Kaniadakis Entropy

Author(s)

Amelia Carolina Sparavigna

Download Full PDF DOI: 10.18483/ijSci.866 Downloads: 147 Views: 535 Pages: 47-50

Volume 4 - October 2015 (10)

Abstract

Tsallis and Kaniadakis entropies are generalizing the Shannon entropy and have it as their limit when their entropic indices approach specific values. Here we show some relations existing between Tsallis and Kaniadakis entropies. We will also propose a rigorous discussion of the conditional Kaniadakis entropy, deduced from these relations.

Keywords

Entropy, Generalized Entropies

References

  1. Shannon, C.E. (1948). A Mathematical Theory of Communication. Bell System Technical Journal 2 (3):379–423. DOI: 10.1002/j.1538-7305.1948.tb01338.x
  2. Borda, M. (2011). Fundamentals in Information Theory and Coding. Springer. ISBN 978-3-642-20346-6.
  3. Tsallis, C. (1960). Possible Generalization of Boltzmann-Gibbs Statistics, Journal of Statistical Physics, 1988, 52: 479–487. DOI:10.1007/BF01016429
  4. Kaniadakis, G.(2002). Statistical Mechanics in the Context of Special Relativity, Phys. Rev. E, 2002, 66, 056125. DOI: 10.1103/physreve.66.056125
  5. Sparavigna, A.C. (2015). On the Generalized Additivity of Kaniadakis Entropy, Int. J. Sci. 4(2):44-48. DOI: 10.18483/ijSci.627
  6. Kaniadakis, G. (2001). Non-linear kinetics underlying generalized statistics, Physica A 296(3-4):405-425. DOI: 10.1016/s0378-4371(01)00184-4
  7. Santos, P.; Silva R.; Alcaniz J.S.; Anselmo, D.H.A.L. (2011). Generalized quantum entropies Physics Letters A 375:3119–3123. DOI: 10.1016/j.physleta.2011.07.001
  8. Scarfone, A.M.; Wada, T. Thermodynamic equilibrium and its stability for microcanonical systems described by the Sharma-Taneja-Mittal entropy, 2005, Phys. Rev. E 72, 026123. DOI: 10.1103/physreve.72.026123
  9. Sparavigna, A.C. (2015). Mutual Information and Nonadditive Entropies: A Method for Kaniadakis Entropy, International Journal of Sciences 10(2015):5-8. DOI: 10.18483/ijSci.846
  10. Abe, S.; Rajagopal, A.K. (2000). Nonadditive Conditional Entropy and its Significance for Local Realism, arXiv:quant-ph/0001085, 24 Jan 2000.

Cite this Article:

International Journal of Sciences is Open Access Journal.
This article is licensed under a Creative Commons Attribution 4.0 International (CC BY 4.0) License.
Author(s) retain the copyrights of this article, though, publication rights are with Alkhaer Publications.

Issue July 2017

Volume 6, July 2017


Table of Contents


Order Print Copy

World-wide Delivery is FREE

Share this Issue with Friends:


Submit your Paper