Tsallis and Kaniadakis Entropic Measures in Polytropic, Logarithmic and Exponential Functions

Tsallis and Kaniadakis Entropic Measures in Polytropic, Logarithmic and Exponential Functions

Loading document ...
Page
of
Loading page ...

Author(s)

Author(s): Amelia Carolina Sparavigna

Download Full PDF Read Complete Article

DOI: 10.18483/ijSci.873 335 997 1-4 Volume 4 - Nov 2015

Abstract

Among nonextensive statistical approaches, those proposed by Constantino Tsallis and Giorgio Kaniadakis had been involved in the study of several physical phenomena. Here, we will discuss the case of the polytropic solutions of self-gravitating fluid spheres used in astrophysics as approximate stellar models. We will see how, in this problem, Tsallis and Kaniadakis entropic measures are related. After, following the same approach, we will find the links between generalized logarithms and exponential functions of the abovementioned entropic measures.

Keywords

Entropy, Generalized Entropies

References

  1. Sumiyoshi, A. and Yuko O., Editors (2001). Nonextensive Statistical Mechanics and Its Applications, Springer Science & Business Media, ISBN: 978-3-540-41208-3 (Print) 978-3-540-40919-9 (Online)
  2. Kaniadakis, G. (2013). Theoretical Foundations and Mathematical Formalism of the Power-law Tailed Statistical Distributions. Entropy 15(10):3983-4010. DOI: 10.3390/e15103983
  3. Horedt, G.P. ( 2004). Polytropes. Applications in Astrophysics and Related Fields, Kluwer. ISBN 1-4020-2350-2
  4. Chandrasekhar, S. (1958). An Introduction to the Study of Stellar Structure, Dover.
  5. Knapp, J. (2015). Polytropes, retrieved 9 November 2015 from http://www.astro.princeton.edu/~gk/A403/polytrop.pdf
  6. Plastino, A.R.; Plastino, A. (1993). Stellar Polytropes and Tsallis Entropy. Physics Letters A 174(5):384-386. DOI: 10.1016/0375-9601(93)90195-6
  7. Bento, E.P.; Silva, J.R.P.; Silva, R. (2013). Non-Gaussian Statistics, Maxwellian Derivation and Stellar Polytropes. Physica A: Statistical Mechanics and its Applications 392.4 (2013): 666-672. DOI: 10.1016/j.physa.2012.10.022
  8. Shannon, C.E. (1948). A Mathematical Theory of Communication. Bell System Technical Journal 2(3):379–423. DOI: 10.1002/j.1538-7305.1948.tb01338.x
  9. Tsallis, C. (1960). Possible Generalization of Boltzmann-Gibbs Statistics, Journal of Statistical Physics, 1988, 52: 479–487. DOI:10.1007/BF01016429
  10. Kaniadakis, G.(2002). Statistical Mechanics in the Context of Special Relativity, Phys. Rev. E, 2002, 66, 056125. DOI: 10.1103/physreve.66.056125
  11. Sparavigna, A.C. (2015). On the Generalized Additivity of Kaniadakis Entropy, Int. J. Sci. 4(2):44-48. DOI: 10.18483/ijSci.627
  12. Kaniadakis, G. (2001). Non-Linear Kinetics Underlying Generalized Statistics, Physica A 296(3-4):405-425. DOI: 10.1016/s0378-4371(01)00184-4
  13. Santos, P.; Silva R.; Alcaniz J.S.; Anselmo, D.H.A.L. (2011). Generalized Quantum Entropies, Physics Letters A 375:3119–3123. DOI: 10.1016/j.physleta.2011.07.001
  14. Sparavigna, A.C. (2015). Relations Between Tsallis and Kaniadakis Entropic Measures and Rigorous Discussion of Conditional Kaniadakis Entropy, Int. J. Sci. 4(10):47-50. DOI: 10.18483/ijsci.866

Cite this Article:

International Journal of Sciences is Open Access Journal.
This article is licensed under a Creative Commons Attribution 4.0 International (CC BY 4.0) License.
Author(s) retain the copyrights of this article, though, publication rights are with Alkhaer Publications.

Search Articles

Issue June 2023

Volume 12, June 2023


Table of Contents



World-wide Delivery is FREE

Share this Issue with Friends:


Submit your Paper