Microscopy Study of Xanthorrhoea glauca Leaves and Preliminary Investigation into Biogenic Synthesis of Silver Nanoparticles

Microscopy Study of Xanthorrhoea glauca Leaves and Preliminary Investigation into Biogenic Synthesis of Silver Nanoparticles

Loading document ...
Page
of
Loading page ...

Author(s)

Author(s): Gerrard Eddy Jai Poinern, Monaliben Shah, Gordon Thomson, Derek Fawcett

Download Full PDF Read Complete Article

DOI: 10.18483/ijSci.970 298 702 58-62 Volume 5 - Mar 2016

Abstract

The present study examines an eco-friendly room temperature method for synthesising producing Ag nanoparticles using the phytochemicals present in indigenous Xanthorrhoea glauca leaves. The study investigated the transverse and longitudinal sections of the long reed-like leaves via optical microscopy and scanning electron microscopy to determine its structure. Microscopy was also used to determine the sites of nanoparticle synthesis within the leaf structure. While the leaf extract itself was also used to produce Ag nanoparticles from AgNO3. Particle shapes produced during the 20 minute incubation period consisted of cubes, truncated triangular and hexagonal plates ranging in size from 50 nm and 200 nm. Both energy dispersive spectroscopy (EDS) and transmission electron microscopy (TEM) were used to confirm Ag nanoparticle formation.

Keywords

silver nanoparticles, biogenic synthesis, green chemistry

References

  1. Zaniewski, A. M., Schriver, M., Lee, J. G., Crommie, M. F., Zettl, A. Electronic and optical of metal nanoparticles filled graphene sandwiches. J. Appl. Phys. Lett. 2013; 102: 023108, 1-5.
  2. Salata, O. V. Applications of nanoparticles in biology and medicine. Journal of Nanobiotechnology. 2004; 2 (3): 1-6.
  3. Alshehri, A. H., Jakubowska, M., Młożniak, A., Horaczek, M., Rudka, D., Free, C., Carey, J. D. Enhanced Electrical Conductivity of Silver Nanoparticles for High Frequency Electronic Applications. ACS Appl. Mater. Interfaces, 2012; 4 (12): 7007–7010.
  4. Jeong, S. H., Yeo, S. Y., Yi, S. C. The effect of filler particle size on the antibacterial properties of compounded polymer/silver fibres. J. Mat. Sci. 2005; 40: 5407–5411.
  5. Choi, O., Deng, K. K., Kim, N. J., et al. The inhibitory effects of silver nanoparticles, silver ions, and silver chloride colloids on microbial growth, Water Res. 2008; 42: 3066–3074.
  6. Wong, K. K. Y., Liu, X. L. Silver nanoparticles: the real ‘‘silver bullet’’ in clinical medicine? Med. Chem. Comm. 2010; 1: 125–131.
  7. Li, W. R., Xie, X. B., Shi, Q. S., Duan, S. S., Ouyang, Y. S., Chen, Y. B. Antibacterial effect of silver nanoparticles on Staphylococcus aureus. Biometals 2011; 24 (1): 135−141.
  8. Cox, S. G., Cullingworth, L., Rode, H. Treatment of paedi-atricburns with a nanocrystalline silver dressing compared with standard wound care in a burns unit: a cost analysis. South African Medical Journal. 2011; 101 (10): 728–731.
  9. Luyts, K., Napierska, D., Nemery, B., Hoet, P. H. M. How physico-chemical characteristics of nanoparticles cause their toxicity: complex and unresolved interrelations. Environ. Sci. Processes Impact. 2013; 15: 23-38.
  10. Lengke, M., Southam, G. Bioaccumulation of gold by sulphate-reducing bacteria cultured in the presence of gold (I)-thiosulfate complex. Acta. 2006; 70 (14): 3646-3661.
  11. Shanmugavadivu, M., Kuppusamy, S., Ranjithkumar, R. Synthesis of pomegranate peel extract mediated silver nanoparticles and its antibacterial activity. Am. J. Adv. Drug. Deliv. 2014; 2 (2): 174–182.
  12. Kumar, P., Singh, P., Kumari, K., et al. A green approach for the synthesis of gold nanotriangles using aqueous leaf extract of Callistemon viminalis. Mater. Lett. 2011; 65: 595-597.
  13. Jacob, J., Mukherjee, T., Kapoor, S. A simple approach for facile synthesis of Ag, anisotropic Au and bimetallic (Ag/Au) nanoparticles using cruciferous vegetable extracts. Materials Science and Engineering: C. 2012; 32: 1827-1834.
  14. Poinern, G. E. J., Le, X., Chapman, P., Fawcett, D. Green biosynthesis of gold nanoparticles using the leaf extracts from an indigenous Australian plant Eucalyptus macrocarpa. Gold Bulletin 2013; 46: 165-173.
  15. Sheny, D. S., Mathew, T., Philip, D. Phytosynthesis of Au, Ag and Au-Ag bimetallic nanoparticles using aqueous extract and dried leaf of Anacardium occidentale. Spectrochim. Acta Part A. 2011; 79: 254-262.
  16. Mittal, A. K., Chisti, Y., Banerjee, U. C. Synthesis of metallic nanoparticles using plants. Biotechnology Advances. 2013; 31: 346-356.

Cite this Article:

  • BibTex
  • RIS
  • APA
  • Harvard
  • IEEE
  • MLA
  • Vancouver
  • Chicago

International Journal of Sciences is Open Access Journal.
This article is licensed under a Creative Commons Attribution 4.0 International (CC BY 4.0) License.
Author(s) retain the copyrights of this article, though, publication rights are with Alkhaer Publications.

Search Articles

Issue April 2019

Volume 8, April 2019


Table of Contents


Order Print Copy

World-wide Delivery is FREE

Share this Issue with Friends:


Submit your Paper