A Chemosystematic Study of the Moraceae Family: An Analysis of the Metabolites from the Biosynthetic Mixed Pathway (Acetate/Shikimate)

A Chemosystematic Study of the Moraceae Family: An Analysis of the Metabolites from the Biosynthetic Mixed Pathway (Acetate/Shikimate)


Adriana Lima de Sousa, Cibele Maria Stivanin de Almeida, Maria Auxiliadora Coelho Kaplan, Rodrigo Rodrigues de Oliveira

Download Full PDF DOI: 10.18483/ijSci.989 Downloads: 249 Views: 774 Pages: 143-159

Volume 5 - March 2016 (03)


The Moraceae family is a family of great importance amongst angiosperms. It consists of 37 genera and 1500 species, which are extensively distributed, and 23 genera and approximately 350 species alone have been described in Brazilian biomes. Intra-familiar classification, which is based on morphological and anatomical characteristics and on phylogenetic data, organizes the genera from the Moraceae family within the Artocarpeae, Castilleae, Dorstenieae, Ficeae and Moreae tribes. The purpose of the present study is to collaborate towards the understanding of the relationships between the genera and the tribes of this taxon by exploring chemosystematic data available for the Moraceae family, using grouping and factor analyses (CA and FA, respectively) as chemometric methods. The chemosystematic analysis was performed through a bibliographic survey of the number of occurrence of secondary metabolites isolated from the Moraceae family. Six hundred and seventy-eight papers were identified with the aid of ScIFinder, ranging from 1907 to 2014, enumerating 3728 special metabolites from this family, widely distributed within the Artocarpeae (1242), Castilleae (350), Dorstenieae (486), Ficeae (557) and Moreae (1071) tribes. According to the literature, the metabolite biogenesis in this family derives, mainly, from mixed pathways (1827), followed by the acetate (1280) and shikimate pathways (404). However, each tribe of the family shows a specific trend. For example, while the Artocarpeae and Moreae tribes prefer substances from the mixed route, the most predominant ones in the Castileae and Ficeae tribes are from the acetate pathway. The Dorstenieae tribe, on the other hand, presents a reasonable productive equity in this regard. Furthermore, the factor analysis made it possible to relate genera subordinated in the same tribe, due to their peculiarities regarding special metabolite biosynthesis and evolutionary advancement parameters of protection, oxidation and specialization. Finally, these data confirmed the advanced status of the Moraceae family in angiosperms.


Moraceae; Chemotaxonomy; Micromolecules


  1. 1-APG III (Angiosperm Phylogeny Group). 2009. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants. Botanical Journal of Linnean Society. 161 (2): 105-121. http://dx.doi.org/10.1111/j.1095-8339.2009.00996.x
  2. 2-Berg, Cornelis C. 1972. Olmediea e Brosimeae (Moraceae). Flora Neotropica. P. 1-228. http://www.jstor.org/stable/4393672
  3. 3-Berg, Cornelis C. Moreae, Artocarpeae, and Dorstenia (Moraceae): with introductions to the family and Ficus and with additions and corrections to Flora NeotropicaMonograph7. Organization for Flora Neotropica, 2001.
  4. 4-Berg, C. C. "Flora Malesiana precursor for the treatment of Moraceae 8: other genera than Ficus." Blumea-Biodiversity, Evolution and Biogeography of Plants 50.3 (2005): 535-550. http://dx.doi.org/10.3767/000651903X489537
  5. 5-Carauta, J. P. P. 1980.Moraceae: Notas Taxonômicas. Rodriguésia. 32 (53): 109-116.http://www.jstor.org/stable/23493662
  6. 6-Carauta, J.P.P.; Sastre, C.; Romaniuc-Neto, S. 1996. Índice das Espécies Moráceas do Brasil. Albertoa. 4 (7): 77-93. http://kbd.kew.org/kbd/detailedresult.do?id=313842
  7. 7- CLEMENT, W. L.; WEIBLEN, G.D.2009.MorphologicalEvolution in the Mulberry Family (Moraceae). Systematic Botany. 34(3): 530–552. http://dx.doi.org/10.1600/036364409789271155
  8. 8- Conn, Barry J. 2015. Re-straightening the story of Streblus brunonianus and S. pendulinus (Moraceae). Journal of Plant Systematics 18: 73–78.
  9. http://dx.doi.org/10.7751/telopea8500
  10. 9- Dahlgren, R.M.T. 1980. A revised system of classification of the Angiosperms. Botanical Journal of the Linnean Society. Volume 80 ( 2): 91–124. http://dx.doi.org/10.1111/j.1095-8339.1980.tb01661.x
  11. 10-Datwyler, S. L.; Weiblen, G. D. 2004. On the origin the fig: Phylogenetic relationships of Moraceae from NDHF sequences. 91 (5): 767-777. http://dx.doi.org/10.3732/ajb.91.5.767
  12. 11- GOTTLIEB, O. R. 1982. Micromolecular evolution, systematic and ecology: Na essay into a novel botanic discipline. Springer-verlag, Berlin Heidelber, New York.
  13. 12-GOTTLIEB, O. R.; KAPLAN, M. A. C.; BORIN, M. R. DE M. B. 1996. Biodiversidade: um enfoque químico-biológico. Editora UFRJ, Rio de Janeiro.
  14. 13- Harborne, Jeffrey B.1977. Flavonoids and the evolution of the angiosperms .Biochemical Systematics and Ecology. 5 (1): 7-22.http://dx.doi.org/10.1016/0305-1978(77)90013-8
  15. 14- Hair, Joseph F. 1999. Análisis multivariante. Vol. 491. Madrid: Prentice Hall.
  16. 15- Ribeiro, J.E.L.S. 2007.Estudos sobre a filogenia, taxonomia e evolução de caracteres reprodutivos em Moraceae Gaudich. Tese de Doutorado, Universidade Estadual de Campinas, Campinas-SP.
  17. 16-Romaniuc Neto, S.; Carauta, J.P.P.; Vianna Filho, M.D.M.; Pereira, R.A.S.; Ribeiro, J.E.L. da S.; Machado, A.F.P.; Santos, A. dos; Pelissari, G.; Pederneiras, L.C. (2010). Moraceae in Lista de Espécies da Flora do Brasil. Jardim Botânico do Rio de Janeiro. Rio de Janeiro, RJ. See: http://floradobrasil.jbrj.gov.br/jabot/floradobrasil/FB167
  18. 17-Romaniuc Neto, S. 1999. "Cecropioideae (CC Berg) Romaniuc-Neto stat. nov.(Moraceae-Urticales)." Albertoa. 4: 13-16.
  19. 18-Romaniuc- Neto, S. Gaglioti, A.L. & Guido, B.D.O. 2009. Urticales Jussofthe Parque Estadual das Fontes do Ipiranga, São Paulo, SP, Brasil. Hoehnea 36(1), 193-205. http://dx.doi.org/10.1590/S2236-89062009000100012
  20. 19-Soares, Geraldo. G.; Kaplan, Maria . C. 2001. Analysisofflavone-flavonol ratio in Dicotyledoneae. Botanical Journal of the Linnean Society. 135 (1): 61-66. http://dx.doi.org/10.1006/bojl.2000.0357
  21. 20- Soltis, Douglas E.; Moore, Michael J.; Burleigh, J. Gordon; Bell, Charles D.; Soltis, Pamela S.2010. Assembling the Angiosperm tree of life: progress and future prospects. Missouri Botanical Garden Press. Vol. 97, No. 4 pp. 514-526. http://dx.doi.org/10.3417/2009136
  22. 21 -Sytsma, Kenneth J.; Morawetz, Jeffery; Pires, J. Chris; Nepokroeff, Molly; Conti, Elena; Zjhra, Michelle; Hall, Jocelyn C.; Chase, Mark W. 2002. Urticalean Rosids: Circumscription, Rosid Ancestry, And Phylogenetics Based On RBCL, TRNL-F, And NDHF Sequences. American Journal of Botany 89(9): 1531–1546. http://dx.doi.org/10.3732/ajb.89.9.1531
  23. 22- Zerega, N. J.C.; Clement, W. L.; Datwyler, S. L.; Weiblen, G. D. 2005. Biogeography and divergence times in the mulberry family (Moraceae).Molecular Phylogenetics and Evolution. 37 (2): 402-416. http://dx.doi.org/10.1016/j.ympev.2005.07.004
  24. 23- Zerega, N. J.; Supardi,M.N. & Motley, T.J. (2010) Phylogenyand recircumscription of Artocarpeae (Moraceae) with a focus on Artocarpus. Systematic Botany, 35(4), 766-782. http://dx.doi.org/10.1600/036364410X539853

Cite this Article:

International Journal of Sciences is Open Access Journal.
This article is licensed under a Creative Commons Attribution 4.0 International (CC BY 4.0) License.
Author(s) retain the copyrights of this article, though, publication rights are with Alkhaer Publications.

Issue June 2018

Volume 7, June 2018

Table of Contents

Order Print Copy

World-wide Delivery is FREE

Share this Issue with Friends:

Submit your Paper

bypass shell ko-cuce