The CPT-RICCI Scalar Curvature Symmetry in Quantum Electro-Gravity

The CPT-RICCI Scalar Curvature Symmetry in Quantum Electro-Gravity

Loading document ...
Page
of
Loading page ...

Author(s)

Author(s): Piero Chiarelli

Download Full PDF Read Complete Article

DOI: 10.18483/ijSci.1012 236 773 36-58 Volume 5 - May 2016

Abstract

In this work the quantum electro-gravitational equations are derived for half spin charged particles with the help of the hydrodynamic quantum formalism. The equations show the reversing of the trace of the Ricci curvature in passing from matter to antimatter and that the CPT transformation, associated to the reversing of the trace of the Ricci curvature, leads to a more general symmetry in quantum gravity.

Keywords

quantum gravity, quantum Kaluza Klein model, CPT symmetry in quantum gravity

References

  1. M. Aguilar et al. First Result from the Alpha Magnetic Spectrometer on the International Space Station: Precision Measurement of the Positron Fraction in Primary Cosmic Rays of 0.5–350 GeV, Phys. Rev. Lett. 110, 141102 – Published 3 April 2013
  2. Sahni, V., The cosmological constant problem and quintessence, Class. Quant. Grav. 19, 3435, 2002.
  3. Patmanabhan, T., Cosmological constant: the weight of the vacuum, Phys. Rep. 380, 235, 2003.
  4. Copeland, E., Sami, M., Tsujikawa, S., Dynamics of Dark energy, Int. J. Mod. Phys. D 15, 1753, 2006.
  5. Hartle, J., B. and Hawking, S.,W., “The wave function of the universe”, Phys. Rev. D 28, 2960, 1983.
  6. Susskind, L., “String theory and the principle of black hole complementarity”, Phys. Rev. Lett. 71 (15): 2367-8, 1993.
  7. Nicolai H., “Quantum gravity: the view from particle physics”,arXiv:1301.5481 [gr-qc] 2013.
  8. Hollands, S., Wald, R., M., „Quantum field in curved space time“, arXiv 1401.2026 [gr-qc] 2014.
  9. Wang A., Wands, D., Maartens, R., ““, arXiv 0909.5167 [hep-th] 2010.
  10. Witte, E., “Anti De Sitter space and holography”, Adv. Theor. Math. Phys., 2, 253-91, 1998.
  11. Corda C., “Bohr-like model for black holes” Class. Quantum Grav. 32, 195007 (2015)
  12. Zee, A. (2010). Quantum Field Theory in a Nutshell (2nd ed.). Princeton University Press. p. 172.
  13. F. Finster, J. Kleiner, Causal Fermion Systems as a Candidate for a Unified Physical Theory, arXiv:1502.03587v3 [mat-ph] 2015.
  14. P. Chiarelli, The quantum lowest limit to the black hole mass derived by the quantization of Einstein equation, Class. Quantum Grav. ArXiv: 1504.07102 [quant-ph] (2015)
  15. Cabbolet, M., J., T., F., Elementary Process Theory:a formal axiomatic system with a potential application as a foundational framework for physics underlying gravitational repulsion of matter and antimatter, Annalen der Physik, 522(10), 699-738 (2010).
  16. Morrison, P., Approximated Nature of Physiocal Symmatries, Am. J. Phys., 26 358-368 (1958).
  17. Schiff, L.,I., Sign of the gravitational mass of positron, Phys. Rev. Let., 1 254-255 (1958)
  18. Good, M., L., K20 and the Equivalence Principle, Phys. Rev. 121, 311-313 (1961).
  19. Chardin, G. And Rax, J.,M., CP violation: A matter of (anti)gravity, Phys. Lett. B 282, 256-262 (1992).
  20. P. Chiarelli, The antimatter gravitational field, ArXiv: 15064.08183 [quant-ph] (2015).
  21. H. Guvenis, Hydrodynamische Formulierung der relativischen Quantumchanik, The Gen. Sci.. J., 2014.
  22. I. Bialyniki-Birula, M., Cieplak, J., Kaminski, “Theory of Quanta”, Oxford University press, Ny, (1992) 87-111.
  23. P. Chiarelli, “Theoretical derivation of the cosmological constant in the framework of the hydrodynamic model of quantum gravity: the solution of the quantum vacuum catastrophe?” accepted for publication on Galaxies, (2015)
  24. Madelung, E., Quantum Theory in Hydrodynamical Form, Z. Phys. 40, 322-6 (1926).
  25. Jánossy, L.: Zum hydrodynamischen Modell der Quantenmechanik. Z. Phys. 169, 79 (1962).8.
  26. Landau, L.D. and Lifsits E.M., Course of Theoretical Physics, vol.2 p. 309-335, Italian edition, Mir Mosca, Editori Riuniti 1976.
  27. Ibid [26] p. 363.
  28. Dirac, P.,A.,M., A theory of electrons and protons, Pro. A. Roy. So. A. A126, 360-5, 1930.
  29. Feynman, R.,P., space-time approach to quantum electrodynamics, Phys. Rev. B76, 769-89, 1949.
  30. Tsekov, R., Bohmian Mechanics Versus Madelung Quantum Hydrodynamics, arXiv:0904.0723v8 [quantum-ph] (2015).
  31. Villata, M., CPT symmetry and antimatter gravity in general relativity, Europhysics Lett. , 94,2001.
  32. P. Chiarelli, On the cosmological matter abundance versus the quantum matter-antimatter symmetry, HSFM J.9 (7) 2015.

Cite this Article:

  • BibTex
  • RIS
  • APA
  • Harvard
  • IEEE
  • MLA
  • Vancouver
  • Chicago

International Journal of Sciences is Open Access Journal.
This article is licensed under a Creative Commons Attribution 4.0 International (CC BY 4.0) License.
Author(s) retain the copyrights of this article, though, publication rights are with Alkhaer Publications.

Search Articles

Issue December 2019

Volume 8, December 2019


Table of Contents


Order Print Copy

World-wide Delivery is FREE

Share this Issue with Friends:


Submit your Paper