The GIMP Retinex Filter Applied to the Fabric Fault Detection

The GIMP Retinex Filter Applied to the Fabric Fault Detection

Loading document ...
Page
of
Loading page ...

Author(s)

Author(s): Amelia Carolina Sparavigna, Roberto Marazzato

Download Full PDF Read Complete Article

DOI: 10.18483/ijSci.1227 160 646 106-112 Volume 6 - Mar 2017

Abstract

In this paper we are proposing the use of a Retinex filter, the GIMP Retinex, for improving the methods for fabric fault detection based on image processing. Since the Retinex filtering is simulating the human vision, it can act in the processing of the images as the trained staff of textile industry is acting in the visual inspection of fabrics on off-line stations. Here some examples are proposed. These examples show that an image preprocessing based on a Retinex filter can help any further analysis aimed to detect the presence of defects.

Keywords

Image Processing, Retinex Filtering, GIMP Retinex, Texture Analysis, Textiles, Fabric Fault Detection

References

  1. Kumar, A. (2008). Computer-Vision-Based Fabric Defect Detection: A Survey, IEEE Transactions on Industrial Electronics, 55(1), 348-363. DOI: 10.1109/TIE.1930.896476
  2. Rosandich, R. G. (1997). Intelligent Visual Inspection. London, U.K., Chapman & Hall. ISBN: 9781461312017
  3. Nickolay, B. N., & Schmalfuß, H. (1993). Automatic fabric inspection—Utopia or reality? Melliand-Text.ber., 73, 33–37.
  4. Dockery, A. (2001). Automated fabric inspection: assessing the current state of the art. Available at the site Techexchange.com
  5. Jing, J., Zhang, H. , Wang, J., Li, P., & Jia, J. (2013). Fabric defect detection using Gabor filters and defect classification based on LBP and Tamura method. Journal of the Textile Institute, 104(1), 18-27. DOI: 10.1080/00405000.2012.692940
  6. Schneider, D., Holtermann, T., & Merhof, D. (2014). A traverse inspection system for high precision visual on-loom fabric defect detection. Machine vision and applications, 25(6), 1585-1599.DOI: 10.1007/s00138-014-0600-y
  7. Bhangale, R. S., & Zope, C. D. (2014). An Introduction to Textile Defect Identification and Classification Using Wavelet Transform and Neural Networks. International Journal of Advanced Electronics and Communication Systems. Proceedings of the Int. Conference on Modeling and Simulation in Engineering & Technology (ICMSET-2014), 15th - 16th February 2014.
  8. Li, P., Zhao, Z., Zhang, L., Zhang, H., & Jing, J. (2015). The Real-Time Vision System for Fabric Defect Detection with Combined Approach. In International Conference on Image and Graphics (pp. 460-473). Lecture Notes in Computer Science. Springer International Publishing. DOI: 10.1007/978-3-319-21969-1_41
  9. Huang, C. P. (2014). A Study on the Algorithm of Fault Information Automatic Detection for High-Precision Intelligent Instruments. Advanced Materials Research, 846, 167-171. DOI: 10.4028/www.scientific.net/amr.846-847.167
  10. Jinlian Hu (2011). Computer Technology for Textiles and Apparel, Elsevier. ISBN: 9781845697297
  11. Sari-Sarraf, H., & Goddard, J. S. (1999). Vision systems for on-loom fabric inspection, IEEE Trans. Industry applications, 35, 1252-1259. DOI: 10.1109/28.806035
  12. Campbell, J. G., & Murtagh, F. (1998). Automatic vision inspection of woven textiles using a two-stage defect detector, Opt. Eng. 37, 2536-2542. DOI: 10.1117/1.601692
  13. Yau, H. F., Chen, P. W., Wang, N. C., & Lay, Y. L. (1998). Optimization of the illumination beam size of an optical textile defect inspection system, Meas. Sci. Technol. 9, 960-966. DOI: /10.1088/0957-0233/9/6/013
  14. Ribolzi, S., Merckle, J., Gresser, J., & Exbrayat, P. E. (1993). Real time fault detection on textiles using opto-electronic processing, Textile Res. J. 63, 61-71. DOI: 10.1177/004051759306300201
  15. Kasdan, H. L. (1979). Industrial application of diffraction pattern sampling, Opt. Eng. 18, 496-503. DOI: 10.1117/12.7972419
  16. Haralick, R. M., Shanmugam, K., & Dinstein, I. (1973). Textural features for image classification, IEEE Trans. Syst., Man, Cybern., SMC-3, 610-21. DOI: 10.1109/tsmc.1973.4309314
  17. Abouelela, A., Abbas, I., El Deeb, I., & Nassar, S. (2000). A statistical approach for textile fault detection, IEEE International Conference on Systems, Man, and Cybernetics, 8-11 Oct. 2000, 4, 2857-2862. DOI: 10.1109/icsmc.2000.884431
  18. Chan, C. H., & Pang, G. (2002). Fabric defect detection by Fourier analysis, IEEE Transactions on Industry Applications, 36, 1267-1276. DOI: 10.1109/28.871274
  19. Arivazhagan, S., Ganesan, L., & Bama, S. (2006). Fault segmentation in fabric images using Gabor wavelet transform. Machine Vision and Applications, 16(6), 356-363.
  20. Kumar, A., & Pang, G. K. H. (2002). Defect detection in textured materials using Gabor filters, Industry Applications, IEEE Transactions on Industry Applications, 38, 425-440. DOI: 10.1109/28.993164
  21. Jasper, J. W., Garnier, S. J. & Potlapalli, H. (1996). Texture characterization and defect detection using adaptive wavelets, Opt. Eng., 35, 3140-3149. DOI: 10.1117/1.601054
  22. Montrucchio, B., Sparavigna, A., & Strigazzi, A. (1998). A new image processing method for enhancing the detection sensitivity of smooth transitions in liquid crystals, Liq. Cryst., 24, 841-852. DOI: /10.1080/026782998206669
  23. Sparavigna, A. C., & Montrucchio, B. (2006). Performing Textile Fault Detection by Means of Texture Analysis. WSEAS Transactions on Signal Processing, 2, 541-548.
  24. Sparavigna, A., & Montrucchio, B. (2006, April). Texture analysis for textile fault detection. In Proceedings of the 5th WSEAS international conference on Applied computer science (pp. 861-866). World Scientific and Engineering Academy and Society (WSEAS).
  25. Sparavigna A., Dorma, G. & Montrucchio, B. (2006). Diffractive optics for fabric fault detection, pp. 82-88, Vol. 5, SCI2006 - X World Multi-Conference on Systemics, Cybernetics and Informatics, Orlando, Florida, July 16-19.
  26. Sparavigna, A. C. (2015). GIMP Retinex for enhancing images from microscopes. International Journal of Sciences, 4(6), 72-79. DOI: 10.18483/ijsci.758
  27. Sparavigna, A. C., & Marazzato, R. (2015). Effects of GIMP Retinex Filtering Evaluated by the Image Entropy. arXiv preprint arXiv:1512.05653.
  28. Marazzato, R., & Sparavigna, A. C. (2015). Retinex filtering of foggy images: generation of a bulk set with selection and ranking. arXiv preprint arXiv:1509.08715.
  29. Sparavigna, A. C., & Marazzato, R. (2016). Evaluation of GIMP Retinex Filtering of Images by Means of the Shen++Max Shannon Entropy Finder.
  30. Sparavigna, A. C. (2015). An image processing approach based on Gnu Image Manipulation Program GIMP to the panoramic radiography. International Journal of Sciences, 4(5), 57-67. DOI: 10.18483/ijsci.721
  31. Barnard, K., & Funt, B. (1999). Investigations into multi-scale Retinex, in Colour Imaging: Vision and Technology, L. MacDonald, Ed. and M. Ronnier Luo. Ed., John Wiley and Sons, pp. 9-17. ISBN: 9780471985310
  32. Zhixi Bian, & Yan Zhang (2002). Retinex image enhancement techniques: Algorithm, application and advantages, EE264 final project report for Image Processing and Reconstruction.
  33. Jobson, D.J., Rahman, Z., & Woodell, G.A. (1997). A Multi-Scale Retinex for bridging the gap between colour images and the human observation of scenes, IEEE Transactions on Image Processing 6(7):965-976. DOI: 10.1109/83.597272
  34. Land, E.H. (1986). An alternative technique for the computation of the designator in the Retinex theory of color vision, Proc. Nat. Acad, Sci. 83:3078-3080. PMCID: PMC323455
  35. Land, E.H. (1983). Recent advances in Retinex theory and some implications for cortical computations, Proc. Nat. Acad. Sci. 80:5163-5169. PMCID: PMC384211
  36. Land, E. H. (1986). Recent advances in Retinex theory, Vis. Res. 26:7-21. DOI: 10.1016/0042-6989(86)90067-2
  37. Land, E. H. (1959). Experiments in color vision, Scientific American, May Issue, 285-298.
  38. Land, E. H. (1959). Color vision and the natural image, Proc. of the National Academy of Sciences 45(1):115–129. PMCID: PMC222521
  39. Jobson, J., Rahman, Z., & Woodell, G.A. (1997). Properties and performance of a center/surround Retinex, Image Processing IEEE Transactions on 6(3):451-462. DOI: 10.1109/83.557356
  40. Fabien Pelisson, GIMP Retinex, http://www-prima.inrialpes.fr/pelisson/MSRCR.php

Cite this Article:

  • BibTex
  • RIS
  • APA
  • Harvard
  • IEEE
  • MLA
  • Vancouver
  • Chicago

International Journal of Sciences is Open Access Journal.
This article is licensed under a Creative Commons Attribution 4.0 International (CC BY 4.0) License.
Author(s) retain the copyrights of this article, though, publication rights are with Alkhaer Publications.

Search Articles

Issue April 2019

Volume 8, April 2019


Table of Contents


Order Print Copy

World-wide Delivery is FREE

Share this Issue with Friends:


Submit your Paper