Germination and Viability of Pericopsis elata (Harms) V. Meeuwen (Fabaceae) Seedlings Issues of Different Mother Tree Diameters in Forests Production (East - Cameroon)

Germination and Viability of Pericopsis elata (Harms) V. Meeuwen (Fabaceae) Seedlings Issues of Different Mother Tree Diameters in Forests Production (East - Cameroon)

Loading document ...
Loading page ...


Author(s): Marie Caroline MOMO SOLEFACK, Lucie Félicité TEMGOUA, Norbert Gildas ASSONE

Download Full PDF Read Complete Article

DOI: 10.18483/ijSci.1256 362 561 100-108 Volume 6 - Apr 2017


Pericopsis elata (Fabaceae) is a highly commercial species of semi-evergreen wet forests in central and western Africa. Its exploitation began in the second half of the 20th century because of its highly valued wood on the international market. Because of its low potential for natural regeneration, it is now considered an endangered species by IUCN and listed in Appendix II of CITES. No action was taken on the identification of good mother tree to enable good production of seedlings suitable for the management of logged forests of this species. Hence the need for new scientific investigation with a view to obtaining the missing information which would allow an unambiguous decision on the threats to the species. The objective of this study, which was conducted from November 2015 to July 2016, was to determine the diameter classes with the highest seed germination rate and the highest viability of the seedling seedlings at four months after sowing. To determine the germination rate, 100 seeds were tested for each diameter class. After germination, the seedlings were monitored for 120 days at the end of which the viability rate was calculated for each diameter class. Seeds from mother tree of the highest diameter classes [60-70cm[, [70-80cm[, [80-90cm[ and [90-100cm[ recorded the best germination rates with respectively 36, 42, 30 and 36%. The simple regression between germination rate and seed diameter classes is significant at the 5% probability threshold. The highest seedling viability rate of 98% is obtained with mother tree the diameter class [70-80cm[. However, it should be noted that the simple regression between plant viability and seed diameter classes have a fairly good relationship.


Germination, seed, seedlings, diameter class, mother plant, Pericopsis elata


  1. Afouba N.A.M., Noah J. G., Kengne T.J. F., Enama G.B., Maa ngue Y., Adama M., Mfondo A.M., Nkouleziem A., Nguibourg R.K. and V. Laoudji. 2011. Plan Communal de Développement de Messok, 125p
  2. Alvarez R., Valbuena L. and L. Calvo. 2005. Influence of tree age on seed germination response to environmental factors and inhibitory substances in Pinus pinaster. International Journal of Wildland Fire 14(3):277-284.
  3. Andrianoelina A. O. 2009. Diversité génétique, physiologie de reproduction et étude d’impact de la fragmentation sur Dalbergia monticola de la forêt orientale de Madagascar. Thèse de doctorat, Université d’Antananarivo. 129p.
  4. Anglaaere L.C.N. 2008. Pericopsis elata (Harms) Van Meeuwen In Louppe D., Oteng- Amoako A.A., Brink M. (Editeurs), 2008. Ressources végétales de l’Afrique tropicale 7(1). Bois d’œuvre 1. Fondation PROTA/Backuys Publishers/CTA, Wageningen, Pays-Bas, 478-482.
  5. Betti J. L. 2007. Exploitation and exportation of Pericopsis elata (Fabaceae) in Cameroon. June 2007, The Hague, Netherlands ITTO side event at the 14th meeting of the CITES.
  6. Bourland N., Kouadio Y.L., Colinet G. and J.-L. Doucet. 2010. Pericopsis elata (Harms) Meeuwen in the southeastern part of Cameroon: ecological and pedological approaches to improve the management of an endangered commercial timber species. Int. For. Rev. 12(5) : 111.
  7. Bourland N., Kouadio Y. L., Fétéké F., Lejeune P. and J.-L. Doucet. 2012. Ecology and management of Pericopsis elata (Harms) Meeuwen (Fabaceae) populations: a review. Biotechnol. Agron. Soc. Environ. 16(4) : 486-498.
  8. Boyemba F. 2011. Ecologie de Pericopsis elata (Harm) Van Meeuwen (Fabaceae), arbre de forêt tropicale africaine à répartition agrégée. Thèse de doctorat, Université Libre de Bruxelles, 206 p.
  9. Cendán C., Sampedro L. and R. Zas. 2013. The maternal environment determines the timing of germination in Pinus pinaster. Environmental and Experimental Botany 94:66–72.
  10. Dickson B., Mathew P., Mickleburgh S., Oldfield S., Pouakouyou D. and J. Suter. 2005. An assessment of the conservation status, management and regulation of the trade in Pericopsis elata. Fauna et Flora International, Cambridge, UK.
  11. Espahbodi K., Hosseini S.M., Mirzaie-Nodoushan H., Tabar M., Akbarinia M. and Y. Dehghan-Shooraki. 2007. Tree age effects on seed germination in Sorbus torminalis. General and Applied Plant Physiology 33:107-119.
  12. Fabião A., Faria C., Almeida M.H. and A. Fabião. 2014. Influence of mother plant and scarification agents on seed germination rate and vigor in Retama sphaerocarpa L. (Boissier). IForest-Biogeosciences and Forestry 7: 306-312.
  13. Food and Agricultural Organisation. 1980. Récolte, manipulation, conservation et prétraitement des semences de Prosopis en Amérique latine.
  14. Ganatsas P., Tsakaldimi M. and C. Thanos. 2008. Seed and cone diversity and seed germination of Pinus pinea in Strofylia Site of the Natura 2000 Network. Biodiversity and Conservation 17(10): 2427-2439.
  15. Grayson K.J., Wittwer R.F. and M.G. Shelton. 2002. General Technical Reports. SRS-48. Asheville, NC, USA: Department of Agriculture, Forest Service, Southern Research Station; Cone characteristics and seed quality 10 years after an uneven-aged regeneration cut in shortleaf pine stands.
  16. Grey D. and T.H. Thomas. 1982. Seed germination and seedling emergence as influenced by the position of development of the seed on, and chemical applications to, the parent plant. In: Khan, A.A. (ed.) The Physiology and Biochemistry of Seed Development, Dormancy and Germination. Elsevier, New York, pp. 81–110.
  17. Gutterman Y. 1978. Germinability of seeds as a function of the maternal environments. Acta Horticulturae 83: 49-55.
  18. Gutterman Y. 1994. Long-term seed position influences on seed germinability of the desert annual, Mesembryanthemum nodiflorum L. Israel Journal of Plant Sciences 42: 197-205.
  19. Gutterman Y. 1996. Environmental influences during seed maturation, and storage affecting germinability in Spergularia diandra genotypes inhabiting the Negev Desert, Israel. Journal of Arid Environments 34: 313-323.
  20. Kigel J., Gibly A. and M. Negbi. 1979. Seed germination in Amaranthus retroflexus L. as affected by the photoperiod and age during flower induction of the parent plants. Journal of Experimental Botany 30: 997-1002.
  21. Letouzey. 1968. Flore du Cameroun, 45p
  22. Mao P., Han G., Wang G., Yu J., and H. Shao. 2014. Effects of Age and Stand Density of Mother Trees on Early Pinus thunbergii Seedling Establishment in the Coastal Zone, China. The Scientific World Journal 2014 : 9 pages
  23. Müller M., Siles L., Cela J. and S. Munné-Bosch. 2014. Perennially young: seed production and quality in controlled and natural populations of Cistus albidus reveal compensatory mechanisms that prevent senescence in terms of seed yield and viability. Journal of Experimental Botany 65:287-297.
  24. Nathan R. and H.C. Muller-Landau. 2000. Spatial patterns of seed dispersal, their determinants and consequences for recruitment. Trends in Ecology and Evolution 15(7):278-285.
  25. Onana M.H. 2013. Sylviculture et régénération naturelle de Pericopsis elata en plantation : cas des régions de l’Est et du Sud Cameroun. Mémoire de fin d’étude. FASA/UDS, 88p
  26. Plan d’aménagement des UFA de la société PALLISCO et partenaires (2015). Résumé des plans d’aménagement et des directives FSC pour les UFA 10-030, 10-031, 10- 039, 10-041, 10-042 et 10-044 exploitées par la société PALLISCO et ses partenaire. Résumé v02. 39p.
  27. Pieters A. 1994. Natural regeneration in the equatorial forest of the Yangambi Region, applied to Afrormosia elata Harms. Leuven, Belgium. 37p.
  28. Rowe J. S. 1964. Environmental preconditioning, with special reference to forestry. Ecology 45:399-403.
  29. Scott S.J., Jones R.A. and W.A. Williams. 1984. Review of data analysis methods for seed germination. Crop science 24(6): 1192-1199.
  30. Stancic I., Zivic J., Petrovic S. and D. Knezevic 2014. Impact of genes and proportional contribution of parental genotypes to inheritance of root yield and sugar content in diploid hybrids of sugar beet. The Scientific World Journal 2014:5 pages.
  31. Tchatat M. 2009. Plan de gestion des plantations forestières de P. elata de Bidou (Kribi) au Cameroun. 48p.
  32. Viglas J.N., Brown C.D. and J.F. Johnstone. 2013. Age and size effects on seed productivity of northern black spruce. Canadian Journal of Forest Research 43:534-543.
  33. Yakovlev I., Fossdal C.G., Skrøppa T., Olsen J.E., Jahren A.H. and Ø.Johnsen. 2012 An adaptive epigenetic memory in conifers with important implications for seed production. Seed Science Research 22:63-76.

Cite this Article:

International Journal of Sciences is Open Access Journal.
This article is licensed under a Creative Commons Attribution 4.0 International (CC BY 4.0) License.
Author(s) retain the copyrights of this article, though, publication rights are with Alkhaer Publications.

Search Articles

Issue April 2021

Volume 10, April 2021

Table of Contents

World-wide Delivery is FREE

Share this Issue with Friends:

Submit your Paper