Salmonella enterica Serovar Typhi and Paratyphi Responsible of Typhoid and Paratyphoid Fevers Transmitted by Environment and Food

Salmonella enterica Serovar Typhi and Paratyphi Responsible of Typhoid and Paratyphoid Fevers Transmitted by Environment and Food

Loading document ...
Loading page ...


Author(s): Somda Namwin Siourimè, Bonkoungou Ouindgueta Juste Isidore, Traoré Yves, Savadogo Aly

Download Full PDF Read Complete Article

DOI: 10.18483/ijSci.1305 167 650 87-96 Volume 6 - May 2017


This study deals with Salmonella enterica serovar Typhi and Paratyphi responsible of typhoid and paratyphoid fevers transmitted by environment and foods. Typhoid and paratyphoid fevers are systemic diseases caused by the bacteria Salmonella Typhi and Salmonella Paratyphi, respectively. Humans are the only reservoir for Salmonella Typhi (which is the most serious), whereas Salmonella Paratyphi also has animal reservoirs. Humans can carry the bacteria in the gut for very long times (chronic carriers), and transmit the bacteria to other persons (either directly or via food or water contamination). Although S. Typhi and S. Paratyphi are strictly adapted to humans, both serovars can remain viable in the environment, surviving in water and underlying sediment for days to weeks. Foods are susceptible to be contaminated and transport Salmonella include vegetable products such as lettuce. In developping countries, typhoid and paratyphoide fever were generally treat with using antimicrobial such as quinolones, and cephalosporin. Patients were not responding to the most available antibiotics of choice. Some patients, because of ignorance and lack of financial means, prefer street drugs, so they practice self-medication. Those practices can enhance the antibiotics resistances genes. As the ultimate solution for the prevention and eradication of paratyphoid fever, it is essential to improve sanitation such as the provision of safe water and food as well as enhanced public health awareness.


Salmonella Typhi and Paratyphi, typhoid and paratyphoid fever, epidemiology, antibiotic resistance, environment, food


  1. Akinemi K., Bamiro B.S., Coker A.O. (2007). Salmonellosis in Lagos, Nigeria: incidence of Plasmodium falciparum-associated co-infection, patterns of antimicrobial resistance, and emergence of reduced susceptibility to fluoroquinolones. J. health. Pop. Nutr. 25: 351-358.
  2. Al Naiemi N., Zwart B., Rijnsburger M.C., Roosendaal R., Debets-Ossenkopp Y.J., Mulder J.A., Fijen C.A., Maten W., Vandenbroucke-Grauls C.M., Savelkoul P.H. (2008). Extended-Spectrum-Beta-Lactamase production in a Salmonella enterica serotype Typhi strain from the Philippines. J. Clin. Microbiol. 46: 2794–2795.
  3. Anna E.N., Janell A.R., Barbara E.M. (2016). Typhoid & Paratyphoid Fever. Chapter 3 Infectious Diseases Related to Travel. Cent. Dis. Cont. Prev. 5p.
  4. Ao, T.T., Feasey N.A., Gordon M.A., Keddy K.H., Angulo F.J., Crump, J.A. (2015). Global burden of invasive non typhoidal Salmonella disease, 2010. Emerg. Infect. Dis., 21: 941-949.
  5. Aubry P. and Gaüzère B.A. (2015). Les salmonelloses. Actualités 2015. Med. Trop. 6p.
  6. Baker S., Holt K.E., Clements A.C., Karkey A., Arjyal A., Boni M.F., et al. (2011). Combined high-resolution genotyping and geospatial analysis reveals modes of endemic urban typhoid fever transmission. Open. Biol. 1(2):110008.
  7. Baquero F., Martínez J.L., Cantón R. (2008). Antibiotics and antibiotic resistance in water environments. Cur. Opin. Biotech. 19(3): 260-265.
  8. Bawa H.I., Dembélé R., Tchamba B.G., Bonkoungou O.I.J., Bougoudogo F., Traoré S.A., Barro N. (2016). Antimicrobial susceptibility of Salmonella serotypes isolated from human in West-Africa (Burkina Faso, Mali and Niger). Europ. J. Pharm. Med. Res. 3: 117-122.
  9. Beddoe T., Paton A.W., Le Nours J., Rossjohn J., Paton J.C. (2010). Structure, biological functions, and applications of the AB5 toxins. Trends. Biochem. Sci. 35: 411–418.
  10. Bonkoungou I., Haukka K., Österblad M., Hakanen A.J., Traoré A.S., Barro N., Siitonen A. (2013). "Bacterial and viral etiology of childhood diarrhea in Ouagadougou, Burkina Faso." BMC Pediatrics. 13(36): 1-6.
  11. Buckle G.C., Walker C.L.F., Black R.E. (2012). Typhoid fever and paratyphoid fever: Systematic review to estimate global morbidity and mortality for 2010. J. Glob. Health. 2(1).
  12. Chandran A., Varghese S., Kandeler E., Thomas A., Hatha M., Mazumder A. (2011). An assessment of potential public health risk associated with the extended survival of indicator and pathogenic bacteria in freshwater lake sediments. Inter. J. Hygien. Environ. Health. 214(3): 258-64.
  13. Chau T.T., Campbell J.I., Galindo C.M., et al. (2007). Antimicrobial drug resistance of Salmonella enterica serovars Typhi in Asia and molecular mechanism of reduced susceptibility to the fluoroquinolones. Antimicrob. Agents Chemother. 51: 4316–4323.
  14. Chimbombi E., Moreira R.G., Kim J., Castell-Perez E.M. (2011). Prediction of targeted Salmonella enterica serovar Typhimurium inactivation in fresh cut cantaloupe (Cucumis melo L.) using electron beam irradiation. J. Food. Eng. 103: 409–416.
  15. Crump J.A., Sjölund-Karlsson M., Gordon M.A., Parry C.M. (2015). Epidemiology, Clinical Presentation, Laboratory Diagnosis, Antimicrobial Resistance, and Antimicrobial Management of Invasive Salmonella Infections. Clin. Microbiol. Rev. 28 (4): 901-937.
  16. Crump J.A. and Heyderman R.S. (2015). A perspective on invasive salmonella disease in Africa. Clin. Infect. Dis. 61 (4): S235-S240.
  17. Crump J.A. and Mintz E.D. (2010). Global trends in typhoid and paratyphoid fever. Clin. Infect. Dis. 50: 241–246.
  18. Das S., Samajpati S., Ray U., Roy I., Dutta S. (2016). Antimicrobial resistance and molecular subtypes of Salmonella enterica serovar Typhi isolates from Kolkata, India over a 15 years period 1998–2012. Int. J. Med. Microbiol.
  19. Dembélé R., Konaté A., Bonkoungou I.J.O., Kagambèga A., Konaté K., Bagré T.S., Traoré A.S., Barro N. (2014). Serotyping and antimicrobial susceptibility of Salmonella isolated from children under five years of age with diarrhea in rural Burkina Faso. Afr. J. Microbiol. Res. 8: 3157-3163.
  20. Deng L., Song J., Gao X., Wang J., Yu H., Chen X., Varki N., Naito-Matsui Y., Galan J.E., and Varki A. (2014). Host adaptation of a bacterial toxin from the human pathogen Salmonella Typhi. Cell. 159: 1290–1299.
  21. Dougan G., and Baker S. (2014). Salmonella enterica serovar Typhi and the pathogenesis of typhoid fever. Annu. Rev. Microbiol. 68: 317–336.
  22. Dubowitz T., Zenk S. N., Ghosh-Dastidar B., Cohen D.A., Beckman R., Hunter G., Collins R. L. (2014). Healthy food access for urban food desert residents: examination of the food environment, food purchasing practices, diet and BMI. Pub. Health. Nutri. 1-11.
  23. Ekdahl K., Jong B., Andersson Y. (2005). Risk of Travel‐Associated typhoid and paratyphoid Fevers in Various Regions. J. Travel Med. 12(4): 197-204.
  24. Finlay B.B. and Falkow S. (1990). Salmonella interactions with polarized human intestinal Caco-2 epithelial cells. J. Infec. Dis. 162: 1096-106.
  25. Galan J. E. (2015). The Comprehensive Sourcebook of Bacterial Protein Toxins (Fourth Edition). 261p–266.
  26. Garai P., Gnanadhas D.P., Chakravortty D. (2012). Salmonella enterica serovars Typhimurium and Typhi as model organisms revealing paradigm of host-pathogen interactions. Rev. Virul. G. Landes Biosc. 3: (4) 377–388.
  27. Ge C., Bohrerova Z., Lee J. (2013). Inactivation of internalized Salmonella Typhimurium in lettuce and green onion using ultraviolet C irradiation and chemical sanitizers. J. Appl. Microbiol. ISSN 1364-5072. doi:10.1111/jam.12154
  28. Geetha V.K., Yugendran T., Srinivasan R., Harish B.N., (2014). Plasmid-mediated quinolone resistance in typhoidal Salmonella: a preliminary report from south India. Indian J. Med. Microbiol. 32: 31–34.
  29. Guiney D.G., and Fierer J. (2011). The role of the spv genes in Salmonella pathogenesis. Frontiers in Microbiology. Cell. Infect. Microbiol. Volume 2 Article 129.
  30. Hacker J. and Kaper J.B. (2000). Pathogenicity islands and the evolution of microbes. Annu. Rev. Microbiol. 54: 641-679.
  31. Haghjoo E. and Galan J.E. (2004). Salmonella typhi encodes a functional cytolethal distending toxin that is delivered into host cells by a bacterial-internalization pathway. Proc. Natl. Acad. Sci. USA 101: 4614–4619.
  32. Hassing R.J., Goessens W.H.F., Pelt W., Mevius D.J., Stricker B.H., Molhoek N., Verbon A., Genderen P.J.J. (2014). Salmonella subtypes with increased MICs in azithromycin in travelers returned to Netherlands. Emerg. Infect. Dis. 20: 705–710.
  33. Holt K.E., Phan M.D., Baker S., Duy P.T., Nga T.V.T., Nair S., Turner A.K., Walsh C., Fanning S., Farrell-Ward S., Dutta S., Kariuki S., Weill F.X., Parkhill J., Dougan G., Wain, J. (2011). Emergence of a globally dominant IncHI1 plasmid type associated with multiple drug resistant typhoid. PLoS Negl. Trop. Dis. 5, e1245,
  34. Imanishi M., Kweza P.F., Slayton R.B., Urayai T., Ziro O., Mushayi W., Francis-Chizororo M., Kuonza L.R., Ayers T., Freeman M.M., Govore E., Duri C., Chonzi P., Mtapuri-Zinyowera S., Manangazira P., Kilmarx P.H., Mintz E., Lantagne D., and the Zimbabwe Typhoid Fever Outbreak Working Group 2011-2012. (2014). Household Water Treatment Uptake during a Public Health Response to a Large Typhoid Fever Outbreak in Harare, Zimbabwe Am. J. Trop. Med. Hyg. 90: 945–954
  35. Jacobsen C.S., Bech T.B. (2012). Soil survival of Salmonella and transfer to freshwater and fresh produce. Food. Res. Int. 45: 557–66.
  36. Johnson K.J., Gallagher N.M., Mintz E.D., Newton A.E., Brunette G.W., Kozarsky P.E. (2011). From the CDC: new country-specific recommendations for pre-travel typhoid vaccination. J. Travel. Med. 18(6): 430–3.
  37. Kagambèga A., Lienemann T., Aulu L., Traoré A.S., Barro N., Siitonen A., Haukka K. (2013). Prevalence and characterization of Salmonella enterica from the feces of cattle, poultry, swine and hedgehogs in Burkina Faso and their comparison to human Salmonella isolates. BMC. Microbiol. 13: 2-9.
  38. Katz D.J., Cruz M.A., Trepka M.J., Suarez J.A., Fiorella P.D., Hammond R.M. (2002). An outbreak of typhoid fever in Florida associated with an imported frozen fruit. J. Infect. Dis. 186(2): 234-9.
  39. Koffi-Nevry R., Assi-Claire B.J., Koussemon M., Wognin A.S., Coulibaly N. (2011). Potential Enterobacteria risk factors associated with contamination of lettuce (Lactuca sativa) grown in the peri urban area of Abidjan (Côte d’Ivoire). Int. J. Biol. Chem. Sci. 5: 279-290.
  40. Kumarasamy K. and Krishnan P. (2012). Report of a Salmonella enterica serovar typhi isolate from India producing CMY-2 AmpC -lactamase. J. Antimicrob. Chemother. 67: 775–776.
  41. Kümmerer K. (2009). Antibiotics in the aquatic environment. A review Part I. Chemosphere. 75(4): 417-434.
  42. Kusumaningrum H.D. and Suliantari Dewanti-Hariyadi R. (2012). Multidrug resistance among different serotypes of Salmonella isolates from fresh products in Indonesia. Inter. Food. Research. J. 19: 57–63.
  43. Li B., Vellidis G., Liu H., Jay-Russell M., Zhao S., Hu Z., Wright A., Elkins C.A. (2014). Diversity and Antimicrobial Resistance of Salmonella enterica Isolates from Surface Water in Southeastern United States. Appl. Environ. Microbiol. 80(20) 6355–6365.
  44. Lynch M.F., Tauxe R.V., Hedberg C.W. (2009). The growing burden of foodborne outbreaks due to contaminated fresh produce: risks and opportunities. Epidemiol. Infect. 137: 307–315.
  45. Maka Ł. and Popowska M. (2016). Antimicrobial resistance of Salmonella spp. isolated from food. Review Article. Rocz. Panstw. Zakl. Hig. 67(4): 343-358
  46. Mainardi J. L., Goldstein F.W., Gutman L. (1996). Mécanismes de résistance bactérienne aux antibiotiques. Encycl. Méd. Chir., Maladies infectieuses, 8-006 N-10, 8p
  47. Meltzer E., Stienlauf S., Leshem E., Sidi Y., Schwartz E. (2014). A large outbreak of Salmonella Paratyphi A infection among Israeli travelers to Nepal. Clin. Infect. Dis. 58(3):359-64.
  48. Merritt E.A., and Hol W.G. (1995). AB5 toxins. Curr. Opin. Struct. Biol. 5: 165–171.
  49. Nitiema L.W., Nordgren J., Ouermi D., Dianou D., Traore A.S., Svensson L., Simpore J. (2011). Burden of rotavirus and other enteropathogens among children with diarrhea in Burkina Faso. Int. J. Infect. Dis. 15: 646-652.
  50. Okome-Nkoumou M., Elsa N.J.A., Kombila M. (2001). Etiologie des diarrhées aiguës bactérienne de l'adulte dans un service de medecine interne à Libreville, Gabon. Med. Trop. 61: 143-147.
  51. Ongeng D., Muyanja C., Geeraerd A.H., Springael D., Ryckeboer J. (2011). Survival of Escherichia coli O157:H7 and Salmonella enterica serovar Typhimurium in manure and manure-amended soil under tropical climatic conditions in Sub-Saharan. Africa. J. Appl. Microbiol. 110: 1007–1022.
  52. Parry C.M., Hien T.T., Dougan G., White N.J., Farrar J.J. (2002). Typhoid fever. N. Engl. J. Med. 347 : 1770–1782.
  53. Petterson S.R., Ashbolt N.J., Sharma A. (2010). Microbial risks from wastewater irrigation of salad crops: a screening-level risk assessment. J. Food. Sci. 75: 283-290.
  54. Raffatellu M., Wilson R.P., Winter S.E., Baumler A.J. (2008). Clinical pathogenesis of typhoid fever. J. Infect. Dev. Ctries. 2: 260–266.
  55. Rai S., Jain S., Prasad K.N., Ghosal U., Dhole T.N. (2012). Rationale of azithromycin prescribing practices for enteric fever in India. Indian J. Med. Res. 30: 30–33.
  56. Richa M., Kashi N.P. (2016). Antimicrobial susceptibility to azithromycin among Salmonella enterica Typhi and Paratyphi A isolates from India. J. Med. Microbiol. 65: 1536-1539, doi:10.1099/jmm.0.000390.
  57. Rowe B., Ward L.R., Threlfall E.J., (1997). Multidrug-resistant Salmonella typhi: a worldwide epidemic. Clin. Infect. Dis. 24: 106–109.
  58. Saarinen M., Ekman P., Ikeda M., Virtala M., Grönberg A., Yu D., et al. (2002). Invasion of Salmonella into human intestinal epithelial cells is modulated by HLA‐B27. Rheumatol.41:651-7.
  59. Sharland M., Butler K., Cant A., Dagan R., Davies G., De Groot R, Elliman D., Esposito S., Finn A., Galanakis M., Giaquinto C., Gray J., Heath P., Heikkinen T., Heininger U., Henneke P., Lutsar I., Lyall H., Torres M.F., Pollard A., Ramsay M., Riordan A., Rodrigues F., Roilides E., Rojo P., Shingadia D., Tomlin S., Tsolia M. (2016). Typhoid and paratyphoid enteric fever in OSH Man. child. infect: The blue book (4e ed). Doi:10.1093/med/9780198729228.001.0001.
  60. Smith S., Opere B., Fowora M., Aderohunmu A., Ibrahim R., Omonigbehin E., Bamidele M., Adeneye A. (2012). Molecular characterization of Salmonella spp directly from snack and food commonly sold in Lagos, Nigeria. South East Asian J. Trop. Med. 43: 718-23.
  61. Somda N.S., Bonkoungou O.J.I., Traoré O., Bassolé I.H.N., Traoré Y., Barro N., Savadogo A. (2017). Serotyping and antimicrobial drug resistance of Salmonella isolated from lettuce and human diarrhea samples in Burkina Faso. Afr. J. Infect. Dis. 11 (2): 001-006.
  62. Song J., Gao X., Galan J.E. (2013). Structure and function of the Salmonella Typhi chimaeric A(2) B(5) typhoid toxin. Nature. 499: 350–354.
  63. Spano S., Ugalde J.E., Galan J.E. (2008). Delivery of a Salmonella Typhi exotoxin from a host intracellular compartment. Cell. Host. Microbe. 3: 30–38.
  64. Steele D.A., Burgess D.C.H., Diaz Z., Carey M.E., Zaidi A.K.M. (2016). Challenges and Opportunities for Typhoid Fever Control: A Call for Coordinated Action. Clin. Infect. Dis. 62(S1): S4–S8
  65. Teh C.S., Chua K.H., Thong K.L. (2014). Paratyphoid fever: splicing the global analyses. Int. J. Med. Sci. 11: 732-741.
  66. Timbiné L.G. (2014). Epidémiologie moléculaire de la résistance aux antibiotiques des bactéries entériques isolées en Afrique de l’Ouest (Burkina Faso, Mali, Sénégal). Thèse de Doctorat, Biologie et Pathologie Humaine, Université Cheikh Anta Diop de Dakar, Sénégal. 200p.
  67. Traoré O., Nyholm O., Siitonen A., Bonkoungou O.J.I., Traoré S.A., Barro N., Haukka K. (2015). Prevalence and diversity of Salmonella enterica in water, fish and lettuce in Ouagadougou, Burkina Faso. BMC Microbiol. 15: 151-157.
  68. Yang Y.A., Song J. Typhoid toxin secreted by intracellular Salmonella Typhi is the cause of typhoid-associated neurological syndrome Toxicon, Volume 123, Suppl. 25 December 2016, Page S87
  69. Wain J., Diem Nga L.T., Kidgell C., James K., Fortune S., Diep S.T., Ali T., Gaora P.O., Parry C., Parkhill J., Farrar J., White N.J., Dougan G. (2003). Molecular analysis of incHI1 antimicrobial resistance plasmids from Salmonella serovars Typhi strains associated with typhoid fever. Antimicrob. Agents Chemoth. 47: 2732–2739.
  70. Wain J., Hendriksen R.S., Mikoleit M.L., Keddy K.H., Ochiai R.L. (2015). Typhoid fever. Lancet. 385: 1136–1145.
  71. Wendel A.M., Johnson D.H., Sharapov U., Grant J., Archer J.R., Monson T. (2009). Multistate outbreak of Escherichia coli O157:H7 infection associated with consumption of packaged spinach, August–September 2006: the Wisconsin investigation. Clin. Infect. Dis. 48: 1079-1086.
  72. Wong V.K., Baker S., Pickard D.J., et al. (2015). Phylogeographical analysis of the dominant multidrug-resistant H58 clade of Salmonella Typhi identifies inter- and intracontinental transmission events. Nat. Genet. 47: 632–639.
  73. Woods C.W., Murdoch D.R., Zimmerman M.D., Glover W.A., Basnyat B., Wolf L., et al. (2006). Emergence of Salmonella enterica serotype Paratyphi A as a major cause of enteric fever in Kathmandu, Nepal. Transactions of the Royal Soci. Trop. Med. Hyg. 100(11): 1063-7.
  74. World Health Organization. (2003). Background Document: The Diagnosis, Treatment and Prevention of Typhoid Fever. WHO Document. WHO, Geneva (WHO/V and B/03.07).
  75. World Health Organization. (2014). Background document: the diagnosis, treatment and prevention of typhoid fever.

Cite this Article:

International Journal of Sciences is Open Access Journal.
This article is licensed under a Creative Commons Attribution 4.0 International (CC BY 4.0) License.
Author(s) retain the copyrights of this article, though, publication rights are with Alkhaer Publications.

Search Articles

Issue May 2021

Volume 10, May 2021

Table of Contents

World-wide Delivery is FREE

Share this Issue with Friends:

Submit your Paper