PKA-mediated Autophagy in Aspergillus fumigates

PKA-mediated Autophagy in Aspergillus fumigates

Loading document ...
Page
of
Loading page ...

Author(s)

Author(s): Jianye Shao, Lin Sun, Bin Wang, Wei Zhao

Download Full PDF Read Complete Article

DOI: 10.18483/ijSci.1488 137 535 30-36 Volume 6 - Dec 2017

Abstract

Autophagy is a ubiquitous, non-selective degradation process in eukaryotic cells that is conserved from yeast to man. Autophagy research has increased significantly in the last ten years, as autophagy has been connected with cancer, neurodegenerative disease and various human developmental processes. Autophagy also appears to play an important role in filamentous fungi, impacting growth, morphology and development. In this review, an autophagy model developed for the Aspergillus fumigatus is used as an intellectual framework to discuss autophagy in filamentous fungi. Studies imply that, similar to yeast, fungal autophagy is characterized by the presence of autophagosomes and controlled by the target of rapamycin (Tor) kinase. Autophagy is highly regulated and is under the control of a number of signaling pathways, including the Tor pathway, which coordinates cell growth with nutrient availability. The data shows that autophagy in A.fumigatus is also controlled by the cAMP-dependent protein kinase (PKA) pathway. Elevated levels of PKA activity inhibited autophagy and inactivation of the PKA pathway is sufficient to induce a robust autophagy response. In addition, fungal autophagy is apparently involved in protection against cell death and has significant effects on cellular growth and development. However, the only two putative autophagy proteins characterized in filamentous fungi are Atg1 and Atg8. Here we will discuss various strategies used to study and monitor fungal autophagy as well as the possible relationship between autophagy, physiology, and morphological development.

Keywords

Aspergillus fumigates, Autophagy, cAMP-dependent protein kinase, Tor kinase

References

  1. Akoumianaki, T., Kyrmizi, I., Valsecchi, I., Gresnigt, M. S., Samonis, G., Drakos, E., . . . Chamilos, G. (2016). Aspergillus Cell Wall Melanin Blocks LC3-Associated Phagocytosis to Promote Pathogenicity. Cell Host Microbe, 19(1), 79-90. doi: 10.1016/j.chom.2015.12.002
  2. Bestebroer, J., V'Kovski, P., Mauthe, M., & Reggiori, F. (2013). Hidden behind autophagy: the unconventional roles of ATG proteins. Traffic, 14(10), 1029-1041. doi: 10.1111/tra.12091
  3. Biazik, J., Yla-Anttila, P., Vihinen, H., Jokitalo, E., & Eskelinen, E. L. (2015). Ultrastructural relationship of the phagophore with surrounding organelles. Autophagy, 11(3), 439-451. doi: 10.1080/15548627.2015.1017178
  4. Calvo-Garrido, J., Carilla-Latorre, S., Mesquita, A., & Escalante, R. (2011). A proteolytic cleavage assay to monitor autophagy in Dictyostelium discoideum. Autophagy, 7(9), 1063-1068. doi: 10.4161/auto.7.9.16629
  5. Chamilos, G., Akoumianaki, T., Kyrmizi, I., Brakhage, A., Beauvais, A., & Latge, J. P. (2016). Melanin targets LC3-associated phagocytosis (LAP): A novel pathogenetic mechanism in fungal disease. Autophagy, 12(5), 888-889. doi: 10.1080/15548627.2016.1157242
  6. De Luca, A., Iannitti, R. G., Bozza, S., Beau, R., Casagrande, A., D'Angelo, C., . . . Romani, L. (2012). CD4(+) T cell vaccination overcomes defective cross-presentation of fungal antigens in a mouse model of chronic granulomatous disease. J Clin Invest, 122(5), 1816-1831. doi: 10.1172/JCI60862
  7. de Luca, A., Smeekens, S. P., Casagrande, A., Iannitti, R., Conway, K. L., Gresnigt, M. S., . . . van de Veerdonk, F. L. (2014). IL-1 receptor blockade restores autophagy and reduces inflammation in chronic granulomatous disease in mice and in humans. Proc Natl Acad Sci U S A, 111(9), 3526-3531. doi: 10.1073/pnas.1322831111
  8. Dice, J. F. (2010). Artophagy: The art of autophagy--macroautophagy. Interview by Daniel J. Klionsky. Autophagy, 6(3), 320-321.
  9. Duke, E. M., Razi, M., Weston, A., Guttmann, P., Werner, S., Henzler, K., . . . Collinson, L. M. (2014). Imaging endosomes and autophagosomes in whole mammalian cells using correlative cryo-fluorescence and cryo-soft X-ray microscopy (cryo-CLXM). Ultramicroscopy, 143, 77-87. doi: 10.1016/j.ultramic.2013.10.006
  10. Fuller, K. K., Zhao, W., Askew, D. S., & Rhodes, J. C. (2009). Deletion of the protein kinase A regulatory subunit leads to deregulation of mitochondrial activation and nuclear duplication in Aspergillus fumigatus. Eukaryot Cell, 8(3), 271-277. doi: 10.1128/EC.00391-08
  11. Gao, W., Kang, J. H., Liao, Y., Ding, W. X., Gambotto, A. A., Watkins, S. C., . . . Yin, X. M. (2010). Biochemical isolation and characterization of the tubulovesicular LC3-positive autophagosomal compartment. J Biol Chem, 285(2), 1371-1383. doi: 10.1074/jbc.M109.054197
  12. Geng, J., & Klionsky, D. J. (2010). Determining Atg protein stoichiometry at the phagophore assembly site by fluorescence microscopy. Autophagy, 6(1), 144-147.
  13. Iannitti, R. G., Napolioni, V., Oikonomou, V., De Luca, A., Galosi, C., Pariano, M., . . . Romani, L. (2016). IL-1 receptor antagonist ameliorates inflammasome-dependent inflammation in murine and human cystic fibrosis. Nat Commun, 7, 10791. doi: 10.1038/ncomms10791
  14. Klionsky, D. J. (2011). The autophagosome is overrated! Autophagy, 7(4), 353-354.
  15. Klionsky, D. J., Abdelmohsen, K., Abe, A., Abedin, M. J., Abeliovich, H., Acevedo Arozena, A., . . . Zughaier, S. M. (2016). Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 12(1), 1-222. doi: 10.1080/15548627.2015.1100356
  16. Kyrmizi, I., Gresnigt, M. S., Akoumianaki, T., Samonis, G., Sidiropoulos, P., Boumpas, D., . . . Chamilos, G. (2013). Corticosteroids block autophagy protein recruitment in Aspergillus fumigatus phagosomes via targeting dectin-1/Syk kinase signaling. J Immunol, 191(3), 1287-1299. doi: 10.4049/jimmunol.1300132
  17. Li, M., Khambu, B., Zhang, H., Kang, J. H., Chen, X., Chen, D., . . . Yin, X. M. (2013). Suppression of lysosome function induces autophagy via a feedback down-regulation of MTOR complex 1 (MTORC1) activity. J Biol Chem, 288(50), 35769-35780. doi: 10.1074/jbc.M113.511212
  18. Li, X., Cullere, X., Nishi, H., Saggu, G., Durand, E., Mansour, M. K., . . . Mayadas, T. (2016). PKC-delta activation in neutrophils promotes fungal clearance. J Leukoc Biol, 100(3), 581-588. doi: 10.1189/jlb.4A0915-405R
  19. Martinez, J., Malireddi, R. K., Lu, Q., Cunha, L. D., Pelletier, S., Gingras, S., . . . Green, D. R. (2015). Molecular characterization of LC3-associated phagocytosis reveals distinct roles for Rubicon, NOX2 and autophagy proteins. Nat Cell Biol, 17(7), 893-906. doi: 10.1038/ncb3192
  20. Oikonomou, V., Moretti, S., Renga, G., Galosi, C., Borghi, M., Pariano, M., . . . Romani, L. (2016). Noncanonical Fungal Autophagy Inhibits Inflammation in Response to IFN-gamma via DAPK1. Cell Host Microbe, 20(6), 744-757. doi: 10.1016/j.chom.2016.10.012
  21. Palmer, G. E., Askew, D. S., & Williamson, P. R. (2008). The diverse roles of autophagy in medically important fungi. Autophagy, 4(8), 982-988.
  22. Politi, Y., Gal, L., Kalifa, Y., Ravid, L., Elazar, Z., & Arama, E. (2014). Paternal mitochondrial destruction after fertilization is mediated by a common endocytic and autophagic pathway in Drosophila. Dev Cell, 29(3), 305-320. doi: 10.1016/j.devcel.2014.04.005
  23. Pollack, J. K., Harris, S. D., & Marten, M. R. (2009). Autophagy in filamentous fungi. Fungal Genet Biol, 46(1), 1-8. doi: 10.1016/j.fgb.2008.10.010
  24. Richie, D. L., & Askew, D. S. (2008). Autophagy: a role in metal ion homeostasis? Autophagy, 4(1), 115-117.
  25. Richie, D. L., Fuller, K. K., Fortwendel, J., Miley, M. D., McCarthy, J. W., Feldmesser, M., . . . Askew, D. S. (2007). Unexpected link between metal ion deficiency and autophagy in Aspergillus fumigatus. Eukaryot Cell, 6(12), 2437-2447. doi: 10.1128/EC.00224-07
  26. Sprenkeler, E. G., Gresnigt, M. S., & van de Veerdonk, F. L. (2016). LC3-associated phagocytosis: a crucial mechanism for antifungal host defence against Aspergillus fumigatus. Cell Microbiol, 18(9), 1208-1216. doi: 10.1111/cmi.12616
  27. Stephan, J. S., Yeh, Y. Y., Ramachandran, V., Deminoff, S. J., & Herman, P. K. (2009). The Tor and PKA signaling pathways independently target the Atg1/Atg13 protein kinase complex to control autophagy. Proc Natl Acad Sci U S A, 106(40), 17049-17054. doi: 10.1073/pnas.0903316106
  28. Subramani, S., & Malhotra, V. (2013). Non-autophagic roles of autophagy-related proteins. EMBO Rep, 14(2), 143-151. doi: 10.1038/embor.2012.220
  29. Tam, J. M., Mansour, M. K., Acharya, M., Sokolovska, A., Timmons, A. K., Lacy-Hulbert, A., & Vyas, J. M. (2016). The Role of Autophagy-Related Proteins in Candida albicans Infections. Pathogens, 5(2). doi: 10.3390/pathogens5020034
  30. Turturici, G., Tinnirello, R., Sconzo, G., & Geraci, F. (2014). Extracellular membrane vesicles as a mechanism of cell-to-cell communication: advantages and disadvantages. Am J Physiol Cell Physiol, 306(7), C621-633. doi: 10.1152/ajpcell.00228.2013
  31. Xia, H. G., Najafov, A., Geng, J., Galan-Acosta, L., Han, X., Guo, Y., . . . Vakifahmetoglu-Norberg, H. (2015). Degradation of HK2 by chaperone-mediated autophagy promotes metabolic catastrophe and cell death. J Cell Biol, 210(5), 705-716. doi: 10.1083/jcb.201503044
  32. Yan, J., Du, T., Zhao, W., Hartmann, T., Lu, H., Lu, Y., . . . Jin, C. (2013). Transcriptome and biochemical analysis reveals that suppression of GPI-anchor synthesis leads to autophagy and possible necroptosis in Aspergillus fumigatus. PLoS One, 8(3), e59013. doi: 10.1371/journal.pone.0059013
  33. Zelante, T., Iannitti, R. G., De Luca, A., Arroyo, J., Blanco, N., Servillo, G., . . . Romani, L. (2012). Sensing of mammalian IL-17A regulates fungal adaptation and virulence. Nat Commun, 3, 683. doi: 10.1038/ncomms1685
  34. Zhou, H. F., Yan, H., Hu, Y., Springer, L. E., Yang, X., Wickline, S. A., . . . Pham, C. T. (2014). Fumagillin prodrug nanotherapy suppresses macrophage inflammatory response via endothelial nitric oxide. ACS Nano, 8(7), 7305-7317. doi: 10.1021/nn502372n

Cite this Article:

International Journal of Sciences is Open Access Journal.
This article is licensed under a Creative Commons Attribution 4.0 International (CC BY 4.0) License.
Author(s) retain the copyrights of this article, though, publication rights are with Alkhaer Publications.

Search Articles

Issue June 2024

Volume 13, June 2024


Table of Contents



World-wide Delivery is FREE

Share this Issue with Friends:


Submit your Paper