Moving Ice and Satellites: The Motion of Crevasses in Antarctica

Moving Ice and Satellites: The Motion of Crevasses in Antarctica

Loading document ...
Loading page ...


Author(s): Amelia Carolina Sparavigna

Download Full PDF Read Complete Article

DOI: 10.18483/ijSci.1963 29 108 130-139 Volume 8 - Feb 2019


Antarctica is a remote and hostile continent, the study of which is fundamental because of the role it has on oceans and Earth’s climate. Affected by the global warming phenomenon, Antarctica requires a constant monitoring of the status and motion of its ice. This monitoring can be achieved by means of satellites. Here we will show, by using Google Earth imagery, some evidence of the ice flows in this continent. In particular, we will discuss the motion of some surface features of the ice shelves, which can be considered as the surface expression of basal crevasses. We can measure the rate of their motion too.


Ice flow, Satellite Images, Geophysics, Climate Change, Global Warming, Crevasses, Basal Crevasses, Antarctica, Amery Ice Shelf, Larsen C Ice Shelf


  1. Bromwich, D. H., Nicolas, J. P., Monaghan, A. J., Lazzara, M. A., Keller, L. M., Weidner, G. A., & Wilson, A. B. (2013). Central West Antarctica among the most rapidly warming regions on Earth. Nature Geoscience, 6(2), 139. DOI: 10.1038/ngeo1671
  2. IMBIE team (2018). Mass balance of the Antarctic ice sheet from 1992 to 2017. Nature, 558, 219-222. DOI: 10.1038/s41586-018-0179-y
  3. First Map of Antartica’s Moving Ice, (2011). Available at images/ 51781/ first-map-of-antarticas-moving-ice
  4. Buis, A., & Cole, S. (2011). NASA research leads to first complete map of Antarctic ice flow. NASA. Available at
  5. Rignot, E., Mouginot, J., & Scheuchl, B. (2011). Ice flow of the Antarctic ice sheet. Science Express. Available at Our_Activities/ Observing_the_Earth/ Space_for_our_climate/ Revealed_an_ice_sheet_on_the_move
  6. Goldstein, R. M., Engelhardt, H., Kamb, B., & Frolich, R. M. (1993). Satellite radar interferometry for monitoring ice sheet motion: application to an Antarctic ice stream. Science, 262(5139), 1525-1530. DOI: 10.1126/science.262.5139.1525
  7. Manson, R., Coleman, R., Morgan, P., & King, M. (2000). Ice velocities of the Lambert Glacier from static GPS observations. Earth, planets and space, 52(11), 1031-1036. DOI: /10.1186/BF03352326
  8. Zhang, X., & Andersen, O. B. (2006). Surface ice flow velocity and tide retrieval of the Amery ice shelf using precise point positioning. Journal of Geodesy, 80(4), 171-176. DOI: 10.1007/s00190-006-0062-8
  9. Yu, J., Liu, H., Jezek, K. C., Warner, R. C., & Wen, J. (2010). Analysis of velocity field, mass balance, and basal melt of the Lambert Glacier–Amery Ice Shelf system by incorporating Radarsat SAR interferometry and ICESat laser altimetry measurements. Journal of Geophysical Research: Solid Earth, 115, B11102. DOI: 10.1029/2010JB007456
  10. Shengkai, Z., Dongchen, E., Zemin, W., Yuansheng, L., Bo, J., & Chunxia, Z. (2008). Ice velocity from static GPS observations along the transect from Zhongshan station to Dome A, East Antarctica. Annals of Glaciology, 48, 113-118. DOI: 10.3189/172756408784700716
  11. King, M. A. (2002). The dynamics of the Amery Ice Shelf from a combination of terrestrial and space geodetic data (Doctoral dissertation, University of Tasmania). Open Access Repository:
  12. Damaske, D., & McLean, M. (2005). An aerogeophysical survey south of the Prince Charles Mountains, east Antarctica. Terra Antartica, 12(1/2), 87.
  13. Testut, L., Hurd, R., Coleman, R., Rémy, F., & Legrésy, B. (2003). Comparison between computed balance velocities and GPS measurements in the Lambert Glacier basin, East Antarctica. Annals of Glaciology, 37, 337-343. DOI: 10.3189/172756403781815672
  14. Sunil, P. S., Reddy, C. D., Ponraj, M., Dhar, A., & Jayapaul, D. (2007). GPS determination of the velocity and strain-rate fields on Schirmacher Glacier, central Dronning Maud Land, Antarctica. Journal of Glaciology, 53(183), 558-564. DOI: 10.3189/002214307784409199
  15. Allison, I. (2003). The AMISOR project: ice shelf dynamics and ice-ocean interaction of the Amery Ice Shelf. FRISP Report, 14, 1-9.
  16. Young, N. W., & Hyland, G. (2002). Velocity and strain rates derived from InSAR analysis over the Amery Ice Shelf, East Antarctica. Annals of Glaciology, 34, 228-234. DOI: 10.3189/172756402781817842
  17. King, M. A., Coleman, R., Morgan, P. J., & Hurd, R. S. (2007). Velocity change of the Amery Ice Shelf, East Antarctica, during the period 1968–1999. Journal of Geophysical Research: Earth Surface, 112(F1). DOI: 10.1029/2006JF000609
  18. Sunil, P. S., Reddy, C. D., Ponraj, M., Dhar, A., & Jayapaul, D. (2007). GPS determination of the velocity and strain-rate fields on Schirmacher Glacier, central Dronning Maud Land, Antarctica. Journal of Glaciology, 53(183), 558-564. DOI: 10.3189/002214307784409199
  19. Williams, M. (2018). This is ice in Antarctica, flowing in slow motion like water going through river rapids. Universe Today. Available at 2018-01-ice-antarctica-motion-river-rapids.html
  20. Vv. Aa. (2019).
  21. Sparavigna, A. C. (2013). A study of moving sand dunes by means of satellite images. International Journal of Sciences, 2(8):33-42. DOI: 10.18483/ijSci.229
  22. Sparavigna, A. C. (2013). The GNU Image Manipulation Program Applied to Study the Sand Dunes (September 4, 2013). International Journal of Sciences 2(09):1-8. DOI: 10.18483/ijSci.289
  23. Sparavigna, A. C. (2013). A case study of moving sand dunes: The barchans of the Kharga Oasis. International Journal of Sciences, 2(8):95-97 DOI: 10.18483/ijSci.241
  24. Sparavigna, A. C. (2016). Analysis of the motion of some Brazilian coastal dunes. International Journal of Sciences, 5(1), 22-31. DOI: 10.18483/ijSci.905
  25. Zhao, C., Cheng, X., & Hui, F. M. (2013). Monitoring the Amery Ice Shelf front during 2004–2012 using ENVISAT ASAR data. Adv Polar Sci, 24(2), 133-137. Advances in Polar Science 24(2):133-137. DOI: 10.3724/SP.J.1085.2013.00133
  26. Sparavigna, A. C. (2015). Gimp Retinex for Enhancing Images from Microscopes, International Journal of Sciences 4(06), 72-79. DOI: 10.18483/ijSci.758
  27. Liu, Y., Cheng, X., Hui, F., Wang, X., Wang, F., & Cheng, C. (2014). Detection of crevasses over polar ice shelves using Satellite Laser Altimeter. Science China Earth Sciences, 57(6), 1267-1277. DOI: 10.1007/s11430-013-4796-x
  28. Glasser, N. F., Kulessa, B., Luckman, A., Jansen, D., King, E. C., Sammonds, P. R., Scambos, T.A., & Jezek, K. C. (2009). Surface structure and stability of the Larsen C ice shelf, Antarctic Peninsula. Journal of Glaciology, 55(191), 400-410. DOI: 10.3189/002214309788816597
  29. The Editors of Encyclopaedia Britannica (2019). Available at place/ Larsen-Ice-Shelf
  30. Luckman, A., Jansen, D., Kulessa, B., King, E. C., Sammonds, P., & Benn, D. I. (2012). Basal crevasses in Larsen C Ice Shelf and implications for their global abundance, The Cryosphere, 6, 113-123. DOI: 10.5194/tc-6-113-2012
  31. Bassis, J. N., & Ma, Y. (2015). Evolution of basal crevasses links ice shelf stability to ocean forcing. Earth and Planetary Science Letters, 409, 203-211. DOI: 10.1016/j.epsl.2014.11.003

Cite this Article:

International Journal of Sciences is Open Access Journal.
This article is licensed under a Creative Commons Attribution 4.0 International (CC BY 4.0) License.
Author(s) retain the copyrights of this article, though, publication rights are with Alkhaer Publications.

Search Articles

Issue June 2024

Volume 13, June 2024

Table of Contents

World-wide Delivery is FREE

Share this Issue with Friends:

Submit your Paper