Lipid Profiles and Health Promoting Uses of Carrot (Daucus carota L.) and Cucumber (Cucumis sativus L.)

Lipid Profiles and Health Promoting Uses of Carrot (Daucus carota L.) and Cucumber (Cucumis sativus L.)

Loading document ...
Loading page ...


Author(s): M. O. Aremu, Peace Lydia Ajine, Mary Omolola Omosebi, Nasirudeen Muhammed Baba, Jude Chinedu Onwuka, Saratu Stephen Audu, Bathiya Samuel Shuaibu

Download Full PDF Read Complete Article

DOI: 10.18483/ijSci.2485 38 89 22-29 Volume 10 - Jul 2021


Humans are in–separately linked to the existence of vegetables, as they are the source of several bio–products essential for the survival of the animal kingdom. The importance of vegetables from the point of view of the food industry is determined by their complex chemical content that is important to the human body and this includes organic substances (lipids, proteins, carbohydrates and organic acids). This study examines comparatively the levels of lipid compositions in the samples of dried carrot (Daucus carota L) and cucumber (Cucumis sativus L). The fatty acid, phospholipid and sterol compositions were determined from the samples using Gas Chromatography method. The most concentrated fatty acid (%) was linoleic acid (C18:2) (54.04 and 57.62) and the least was arachidic acid (C20:0) (0.01 and 0.01) for Daucus carota and Cucumis sativus, respectively. The result showed the quality parameters of fatty acids investigated in the Daucus carota and Cucumis sativus samples as: SFA (23.36 and 20.15 %); MUFA (15.27 and 15.5 %); PUFA (60.37 and 64.58 %); DUFA (54.04 and 57.62 %); TUFA (75.64 and 79.83 %); MUFA/SFA (0.63 and 0.76 %); PUFA/SFA (2.87 and 3.47 %); O/L (0.23 and 0.23 %). The total phospholipid contents present in the Daucus carota and Cucumis sativus were 546.11 and 594.51 mg/100 g while that of phytosterols were 366.16 and 376.69 mg/100 g, respectively. Phosphatidycholine has the highest content in both samples (265.80 and 283.64 mg/100 g). The concentrations of phytosterols were very low except in sitosterol (198.71 and 200.53 mg/100 g), stig–masterol (118.42 and 120.39) and campesterol (34.48 and 34.44 mg/100 g) for the Daucus carota and Cucumis sativus samples, respectively. This study revealed that Daucus carota and Cucumis sativus have high values of UFA that make them a special kind of vegetables for nutritional and health applications, and may be a good source of phytosterols.


Daucus carota, Cucumis sativus, Fatty Acids, Phospholipids, Sterols


  1. Butunariu, M. & Butu, A. (2015). Chemical Composition of Vegetables and Their Products. Handbook of Food Chemistry.
  2. Audu, S.S., Aremu, M.O. & Lajide, L. (2011). Effect of processing on fatty acid composition of pinto bean (Phaseolus vulgaris L.) seeds, Int. J. Chem. Sci., 4, 114-119.
  3. Aremu, M. O., Mamman, S. & Olonisakin, A. (2013). Evaluation of fatty acids and physicochemical characteristics of six varieties of bambara groundnut (Vigna subterranean L.) seed oils. La Rwista Italian Delle Sostanze., 90,107-113.
  4. Normen, L., Johnson, M., Anderson, H., Van Gameren, Y. & Dutta, P. (1999). Plant sterols in vegetables and fruits commonly consumed in Sweden, Eur. J. Nutr., 38, 84-89.
  5. Kris-Etherton, P.M.,T.,T.A., Pearson, Y., Wan, R.L., Hargrove, K., Moriarty, V., Fishell & Etherton,T.D. (1999). High monounsaturated fatty acid diets lower both plasma cholesterol and triacyglycerol concentrations. Am. J. Clin. Nutr., 70, 1009-1015.
  6. Aremu, M. O., Aboshi, D. S., David, A., Agere, I. J. H., Audu, S. S. & Musa, B. Z. (2019). Compositional evaluation of bitter melon (Mormordica charantia) fruit and fruit pulp of ebony tree (Diospyros mespiliformis). Int. J. Sci., 8(1), 80–89. DOI: 18483/ijSci.1889.
  7. Xu, C.Y, Wan Yan, R. H. & Li, Z.Y. (2007). Origin of new Brassica types from a singlr intergeneric hybrid between B.rapa and Orychophragmus viola cues by rapid chromosome evolution and introgression. J Genet, 86 (3), 249.
  8. Ranalli, A.,Contento, S., Lucera, L., Pavone, G., Giacomo, G.D., Aloisio, L., Gregorio, C., Di, Mucci, A. & Kourtikakis, I. (2004). Characterization of carrot root oil arising from supercritical fluid carbondioxide extraction, J. Agric. and Food Chem., 52, 4795 –4801.
  9. Alasalvar, C., Grigor, J.M., Chang, D., Quantick, P.C. & Shahidi, F. (2001). Comparism of volatiles, phenolics, sugars, antioxidant vitamins and sensory quality of different coloured carrot varieties, J. Agric. and Food Chem., 49, 1410-1416.
  10. Robertson, I. A., Eastwood, M. A. & Yeomam, M. M. (1979). An investigation into the dietary fiber content of normal varieties of carrot at different development stages. J Agric Food Chem., 39,388– 391.
  11. Okonmah, L.U. (2011). Effects of different types of staking and their cost effectiveness on the growth, yield and yield components of cucumber (Cucumis sativus L.), Int .J. of Agric. Sci. 1(5):290-295.
  12. Eifediyi, E. F. & Remison, S. U. (2010). Growth and yield of cucumber (Cucumis sativus L.) as influenced by farm yard manured inorganic fertilizer. J. Plant Breed Crop Sci., 2, 216-220.
  13. Aremu, M. O., Haruna, A. Oko, O. J. & Ortutu, S. C. (2017). Fatty acid, phospholipid and sterol compositions of breadfruit (Artocarpus altilis) and wonderful kola (Buchholzia aoriacea) seeds, Inter. J. Sci., 6(4): 116–123.
  14. AOAC (2005). Official Methods of Analysis. In: Association of Official Analytical Chemists, Horowitz, W. and G. W. Latin (eds). 18th Edn. AOAC, Wasington DC, pp.14.
  15. Aremu, M. O., Ibrahim, H. & Aremu, S. O. (2016). Lipid composition of black variety of raw and boiled tigernut (Cyperuses culentus L.) grown in North-East Nigeria, Pak . J. Nutr.,15, 427-438.
  16. Aremu, M. O., Ibrahim, H. &Awala, E. Y., Olonisakin, A. & Oko, O. J. (2015). Effect of fermentation on fatty acid composition of African locust bean (Parkia biglobosa) and mesquite bean (Prosopis african) grown in Nigeria, J. Chem. Eng. Res., 2, 817-823.
  17. Aremu, M. O., Odey, M. A., Labaran, L., Nweze, C. C., Salau, R. B. & Ortutu, S. C. (2020). Health effect of lipid components extracted from avocado pear (Persea Americana) pulp and seed, Trends Med. Res., 15, 14–21.
  18. Aremu, M. O. & Amos, V. A. (2010). Fatty acid and physiochemical properties of sponge luffa (Luffa cylindrical) kernel oils, Int. J. Chem. Sci., 3, 161-166.
  19. Ajayi, F. A., Aremu, M. O., Muhammed, Y., Madu, P. C., Atolaiye, B. O., Audu, S. S. & Opaluwa, O. D. (2014). Effect of processing on fatty acid and phospholipid compositions of harms (Brachystegia eurycoma) seed grown in Nigeria, Chem. and Proc. Eng. Res., 22, 18–25.
  20. Baird, J., Fisher, D., Lucas, P., Kleijinen, J., Roberts, H. & Law, C. (2005). Being big or growing fast: systematic review of size and growth in infancy and later obesity, B. M. J. 331, 929–934.
  21. Zielinkska, P. & Nowak, I. (2014). Fatty acids in vegetable oils and their importance in cosmetic industry, Chemik, 63,103-110.
  22. WHO/FAO (1994). Fats and oils in human nutrition FAO Food and Nutrition Paper No.57, Report of a Joint Expert Consultation, FAO, Rome, Italy.
  23. Cunnane, S. & Anderson, M. (1997). Pure linoleate deficiency in the rat: influence on growth, accumulation of n–6 polyunsaturates and (1–14C) linoleate oxidation, J. Lipid Res., 38, 805–812.
  24. Ruthig, D.J. & Meckling-Gill, K.A. (1999). Both (n-3) and (n-6) Fatty Acids Stimulate Wound Healing In the Rat Intestinal Epithelial Cell Line, IEC-6. J. Nutr.,129:1791-1798.
  25. Connor, W.E., Neuringer, M. & Reisbick, S. (1992). Essential Fatty Acids; The importance of n-3 fatty acids in the retina and brain, Nutr. Rev., 50, 21-29.
  26. Mozaffarian, D. (2005). Does linolenic acid intake reduce the risk of coronary heart disease? A review of the evidence, alternative therapies in health and medicine, 11:24-30 quiz 31, 79.
  27. Hu, F. B., Stampfer, M. J. & Manson, J. E. (1999). Dietary intake of linolenic acid and risk of fatal ishemic heart disease in women. Am. J. Clin. Nutr., 69, 890-897.
  28. Adeyeye, E. I., Oshodi, A. A. & Ipinmoroti, K. O. (1999). Fatty acid composition of six varieties of dehulled Africana yam bean (Sphenostylis stenocarpa) flour, Int. J. Food Sci. Nutr., 50, 357-365.
  29. Hilditch, T. P. & Williams, P. N. (1964). The chemical constitution of natural fats, 4th Edn., Chapman and Hall London, UK., pp. 58-69.
  30. Mcleod, G., Ames, J. & Betz, N. L. (1988). Soy flour and its improvement. Crit. Rev. Food Sci. Technol., 27, 219-400.
  31. Ijarotimi, O. S. & Keshinro, O. O. (2012). Comparism between the amino acid, fatty acid , mineral and nutritional quality of raw, germinated and fermented African locust bean (Parkia biglobosa) flour. Acta Scient. Pol. Technol. Aliment., 11, 151-165.
  32. Hegested, D. M., Ausman, L. M., Johnson, J. A., and Dallal, G. E. (1993). Dietary fat and serum lipids: An evaluation of the experimental data, Am. J. Clin. Nutr., 57, 875-883.
  33. Hornstra, G. I. (1974). Dietary fats and arterial thrombosis, Haemostacis, 2:2-52.
  34. Aremu, M. O., Ogunlade, I. & Olonisakan, A. (2007). Fatty acid and amino acid composition of protein concentrate from cashew nut (Anarcadium accidentale) grown in Nasarawa State, Nigeria. Pak. J. Nutr., 6, 419-423.
  35. Branch, W. D., Nakayama, T. & Chennan, M. S. (1990). Fatty acids variation among US runner type peanut cultivars, J. Am. Oil Chem. Soc., 67, 591–596.
  36. Kullenberg, D., Taylor, L.A., Scheneider, M. & Massing, U. (2012). Health effects of dietary phospholipids. Lipids In Health and Dis., 11:1-16.
  37. Wirtz, K. W. (1991). Phospholipid transfer of proteins, Ann. Rev. Biochem., 60:73-99.
  38. Adeyeye, E.I., Adesina, A. Y., Ginika, M. C. &Ariyo, H. E. (2012). Great Barracuda: Its skin and muscle fatty acids, phospholipids and zoosterol’s composition. Int. J. Chem. Sci., 5:18-28.
  39. Alter, T. (2006). More than you wanted to know about fats and oils. Sundance National Food Online Retrieved, 31-08-2006.
  40. Starks, M.A., Starks, S.L., Kingsley, M., Purpura, M. & Jager, R. (2008). The effects of phosphatidylserine endocrine response to moderate intensity exercise. Int. Soc. Sports and Nutr., 5:11-16.
  41. Pirronen, V., Lindsay, D. G., Miettinen, T. A., Toivo, J. & Lampi, A. M. (2000). Plant sterols; biosynthesis, biological functions and their importance to human nutrition. J.Sci.Food Agric, 80, 939-66.
  42. Moreau, R.A., Whitaker, B. D. & Hicks, K. B. (2002). Phytosterols, phytostanols and their conjugates in food: structural diversity, quantitative analysis and health promoting uses. Prog. Lipid Res., 41, 457-500.
  43. Adesina, A. J. & Adefemi, S. O. (2007). Lipid composition of the Basella rubra leaves consumed in South Western Nigeria; Nutritional implications. Bangladesh J. Sci. Ind. Res., 52,125-134.
  44. Garcia-Llatas, G. L., Cercaci, M. T., Rodriguez-Estrada, M. J., Lagarda, R., Farre & Lercler, G. (2008). Sterol oxidation in ready-to-eat infant food during storage. J.Agric.Food Chem., 56, 469-475.
  45. Aremu, M. O., Ohale, I. M., Magomya, A. M., Longbap, D. B. & Ushie, O. A. (2014). Compositional evaluation of raw and processed harms (Brachystegia eurycoma) seed flour. Appl. Food Biotechnol., 2, 9–18.
  46. Aremu, M. O., Oko, O. J., Ibrahim, H., Basu, S. K. & Ortutu, S. C. (2015). Compositional evaluation of seed and pulp of blood plum (Haematostaphis barteri); a wild tree found in Taraba State. Adv. in Life Sci. and Technol., 33, 9–17.
  47. Aremu, M. O. & Ibrahim, H. (2017). Dietary phospholipids and phytosterols: A review of some Nigerian vegetable oils. Int. J. Sci., 6(9), 94–102. DOI:10.18483/ijSci.1436.
  48. Rao, Y. & Koratkor, R. (1997). Anticacinogenic Effects of Saponins and Phytochemicals in Food, Shahidi, F. (Ed.). Chapter 18, American Chemical Society, USA., ISBN-13:9780841234987 pp: 313-324.
  49. Awad, A. B. &Fink, C. S. (2000). Phytosterols as anticancer dietary components; evidence and mechanism of action. J. Nutr.., 130, 2127-2130.
  50. Awad, A. B., Karen, C. C., Downie, A. C. & Fink, C. S. (2000). Peanuts as a source of B-Sitosterol, a sterol with anticancer properties. Nutr. and Cancer., 36, 238-291.
  51. Chen, Q., Gruber, H., Swist, E., Conville, K., Pakenham, C., Ratnayake, W. M. N., and Scoggaan, K.A. (2010). Dietary phytosterls and phytostanols decrease cholesterol levels but increase blood pressure in WKY inbred rats in the absence of salt-loading. Nutr. And Metabol., 7, 11-20.

Cite this Article:

International Journal of Sciences is Open Access Journal.
This article is licensed under a Creative Commons Attribution 4.0 International (CC BY 4.0) License.
Author(s) retain the copyrights of this article, though, publication rights are with Alkhaer Publications.

Search Articles

Issue June 2022

Volume 11, June 2022

Table of Contents

World-wide Delivery is FREE

Share this Issue with Friends:

Submit your Paper