Lipid Composition of Germinated and Non-Germinated Sorghum (Sorghum bicolor) Found in Nasarawa State, Nigeria

Lipid Composition of Germinated and Non-Germinated Sorghum (Sorghum bicolor) Found in Nasarawa State, Nigeria

Loading document ...
Page
of
Loading page ...

Author(s)

Author(s): M. O. Aremu, Ipuole Emmanuel Achuri, S. C. Ortutu, Mary Omolola Omosebi, Abdullahi Usman, O. J. Oko, Lawrencia Labaran

Download Full PDF Read Complete Article

DOI: 10.18483/ijSci.2541 26 58 22-27 Volume 11 - Jan 2022

Abstract

Sorghum (Sorghum bicolor) is an underutilized oil-bearing seed found in Nigeria. The fatty acid, phospholipids and phytosterols composition of germinated and non-germinated seed of Sorghum bicolor were evaluated using standard analytical techniques. The result showed that the most concentrated fatty acids (%) found in the geminated and non-germinated oils were linoleic acid (41.16, 59.45), oleic acid (33.80, 23.05), palmitic acid (18.20, 10.68) and stearic acid (2.35, 1.72). The fatty acids composition of the germinated and non-germinated oils contained a healthy mixture of all the types of saturated and unsaturated fatty acids. The polyunsaturated/saturated index (P/S) was 2.12 % and 3.82 % for germinated and non-germinated oils, respectively. The most prominent phospholipids (mg/100 g) found in the germinated seed oil was phosphatidylcholine (23.86) followed by phosphatidylethanolamine (9.22) and phosphatidylinositol (9.08) while the most prominent in the non-germinated seed oil was phosphatidylcholine (32.39) followed by phosphatidylethanolamine (13.03) and lysophosphatidylcholine (13.07). The high value of phosphatidylcholine showed that Sorghum bicolor may help in protecting the liver from disease and hepatitis. The total phytosterols for germinated and non-germinated were (45.93 mg/100 g and 56.69 mg/100 g), respectively. This suggests that Sorghum bicolor lipid is a good source of food supplement or dietary and health benefits to human.

Keywords

Fatty Acids, Phospholipids, Phytosterols, Germinated, Non-Germinated, Sorghum bicolor

References

  1. Dillon, S. L. Shapter, F. M. Henry, R. J. Cordeiro, G. & Izouierdo, L. (2007). Domestication to crop improvement: Genetic resources for sorghum and saccharum (Andropogoneae), Ann Bot. 100(5), 975-989.
  2. Patil, V. & Gislerod, H. R. (2006). The importance of omega-3 fatty acids in diet, Current Sci., 90(7), 908-909.
  3. Ogori, A. F. (2020). Source, Extraction and Constituents of Fats and Oils. J. Food Sci. Nutr, 6, 1-6.
  4. Afify, A. M. R. El-Beltagi, H. S. Abd El-Salam, S. M. & Omran, A. A. (2012). Oil Fatty Acid Contents of White Sorghum Varieties under Soaking, Cooking, Germination and Fermentation Processing for Improving Cereal Quality. Not Bot Horti. Agrobo, 40(1), 86-92.
  5. Rooney, W. L. (2004). Sorghum improvement-integrating traditional and new technology to produce improved geno-types. Advance in Agronomy, 83, 37-109
  6. Afify, A. M. R. Rashed, M. M. Ebtesam, A. M. & El-Beltagi, H. S. (2011). Effect of gamma radiation on profile, protein fraction and solubility of three oil seeds. Not Bot Hort Agrobo, 39(2), 90-98.
  7. Osagie, A. U. (1987). Total lipids of sorghum grain. J. Agric. Food Chem., 35, 601-604.
  8. Adeyeye, E. I. Adesina, A. J. (2015). Lipid composition of the brain she goat and castrated goat consumed in Ekiti State, Nigeria, Bangladesh J. Sci. Ind. Res. 50, 153 -162
  9. Aremu, M. O. Ibrahim, H. & Andrew, C. (2017). Lipid Comparative studies on the lipid composition of blood plum (Haematostanze barter L) Pulp and seed oils, The Open Biochemistry Journal, 11:94-104.
  10. AOAC. (2005). Official Methods of Analysis 18th Edn. Association of Official Analytical Chemists, Washington, DC., USA.
  11. Olaofe, D. Ogungbenle, H. N. Akhadelor, B. E. Idris, A. O. Omojola, O. V. Omotehinse, O. T. & Ogunbodede, O. A. (2012). Physicochemical and fatty acids composition of oil from some legume seeds. Int. J. Bio Pharm. Allied Sci. 1(3), 355-365.
  12. Aremu, M. O. Ajine, P. L., Omosebi, M. O. Baba, N. M. Onwuka, J. C. Audu, S. S. & Shuaibu, B. S. (2021). Lipid profiles and health promoting uses of carrot (Daucus carota L.) and cucumber (Cucumis sativus L.). Int. J. Sci., 10, 22-29.
  13. Dividson, K. G. Bersten, A. D. Bar, H. A. Dowling, K. D. Nicholas, T. E. & Doyle, I. R. (2000). Lung functions, permeability, and surfactants composition in oleic acid induced acute lung injury in rats. Am. J. Phytol. Lung Cell Mol. Phyto. 279(6), 109-112.
  14. Aremu, M. O. Ibrahim, H. & Aremu, S. O. (2016). Lipid composition of black variety of raw and boiled tigernut (Cyperusesculentus L.). grown in North-east Nigeria. Pak. J. Nutri., 15, 427-438.
  15. Adeyeye, E. I. Oshodi, A. A. & Ipinmoroti, K. O. (2009). Fatty acids composition of six verities of dehulled African yam bean (Sphenostylis stenocarpa) flour, Int. J. Food Sc. Nutri. 50, 357-365.
  16. Aremu, M. O. Mamman, S. & Olonisakin, A. (2013). Evaluation of fatty acid and physicochemical characteristics of six varieties of Bambara groundnut (Vigna subterranean L. Verdc) seed oils. La Rivista Italiana Delle Sostanze, 90, 107-113.
  17. Ortutu, S. C. & Aremu, M. O. (2017). Effect of maturation on the fatty acids and phospholipids composition of guava (Psidium guajava) fruit pulp, La Rivista Italiana Delle Sostanze Grasse. 90(4), 265270.
  18. Aremu, M. O. Ibrahim, H. Awala, E. Y. Olonisakin, A. & Oko, O. J. (2015). Effect on fermentation on fatty acid composition on African locust bean (Parkia biglobosa) and mesquite bean (Prosopis africana) grown in Nigeria, J. Chem. Eng. Chem. Res. 2, 817-823.
  19. Hilditich, T. P. & William, P. N. (2004). The chemical constitution of natural fats. 4thEdn. Chapman and Hall, London UK. 58-60.
  20. Williams, M. A. (1996). Obtaining oils and fats from source materials, Bailey’s industrial oil and fat products, fifth editions. 106-138. John Milley & son New York.
  21. Audu, S. S. Aremu, M. O. & Lajide, L. (2011). Effect of processing on fatty acids composition of pinto bean (Phaseolus vulgaris) seeds, Int. J. Chem. Sci. 4, 114-119.
  22. Hornstra, G. (2004). Dietary fat and arterial thrombosis. Haemostasis. 2, 21-52.
  23. Aremu, M. O. Andrew, C., Salau, R. B., Atolaiye, B. O.. Yebpella, G. G. & Enemali, M. O. (2019). Comparative studies on lipid profile of shea (Vitellaria paradoxa C.F. Gaertn) fruit kernel and pulp, Journal of Applied Sciences, 19(5), 480-486.
  24. Wirtz, K. W. A. (1991). Phospholipid transfer proteins. Annual Rev. Biochemistry. 60(13), 73-99.
  25. Adeyeye, E. I. (2011). Levels of fatty acids, phospholipids and sterols in skin and muscle of tilapia (Oreochromis niloticus) fish. La Rivista Italiana Delle Sostanze Grasse. 88, 46-55.
  26. Wang, Y. W. & Jones, P. J. (2004). Conjugated linoleic acid and obesity control: Efficacy and mechanisms. Int. J. Obesity. (28)9, 41-955.
  27. Moreau, R. A. & Hicks, K. B. (2004). The in–vitro hydrolysis of hydrolysis of phytosterol conjugates in food matrices by mammalian digestive enzynes, Lipids, 39(8), 769 -776.
  28. Patterson, C. A. (2006). Phytosterols and sterols. Agriculture and Agric-Food Canada, Government of Canada.
  29. Berger, A. Jones, P. J. & Abumwesis, S. S (2004). Plant sterols: factors affecting their efficacy and safety as functional food ingredients. Lipid Health Dis., 3(5), 5–11.

Cite this Article:

International Journal of Sciences is Open Access Journal.
This article is licensed under a Creative Commons Attribution 4.0 International (CC BY 4.0) License.
Author(s) retain the copyrights of this article, though, publication rights are with Alkhaer Publications.

Search Articles

Issue April 2022

Volume 11, April 2022


Table of Contents



World-wide Delivery is FREE

Share this Issue with Friends:


Submit your Paper