q-Gaussian Tsallis Line Shapes and Raman Spectral Bands

q-Gaussian Tsallis Line Shapes and Raman Spectral Bands

Loading document ...
Loading page ...


Author(s): Amelia Carolina Sparavigna

Download Full PDF Read Complete Article

DOI: 10.18483/ijSci.2671 21 78 27-40 Volume 12 - Mar 2023


q-Gaussians are probability distributions having their origin in the framework of Tsallis statistics. A continuous real parameter q is characterizing them so that, in the range 1 < q < 3, the q-functions pass from the usual Gaussian form, for q close to 1, to that of a heavy tailed distribution, at q close to 3. The value q=2 corresponds to the Cauchy-Lorentzian distribution. This behavior of q-Gaussian functions could be interesting for a specific application, that regarding the analysis of Raman spectra, where Lorentzian and Gaussian profiles are the line shapes most used to fit the spectral bands. Therefore, we will propose q-Gaussians with the aim of comparing the resulting fit analysis with data available in literature. As it will be clear from the discussion, this is a very sensitive issue. We will also provide a detailed discussion about Voigt and pseudo-Voigt functions and their role in the line shape modeling of Raman bands. We will show a successfully comparison of these functions with q-Gaussians. The role of q-Gaussians in EPR spectroscopy (Howarth et al., 2003), where the q-Gaussian is given as the "Tsallis lineshape function", will be reported. Two examples of fitting Raman D and G bands with q-Gaussians are proposed too.


q-Gaussian distribution, Gaussian distribution, Cauchy distribution, Lorentzian distribution, Voigt distribution, Pseudo-Voigt function, Carbonaceous Materials, Raman spectroscopy, EPR spectroscopy, Tsallis line shape


  1. Alemany, P. A. (1997). Possible connection of the generalized thermostatistics with a scale invariant statistical thermodynamics. Physics Letters A, 235(5), 452-456.
  2. Anderson, P. W., & Weiss, P. R. (1953). Exchange narrowing in paramagnetic resonance. Reviews of Modern Physics, 25(1), 269.
  3. Anderson, P. W. (1954). A mathematical model for the narrowing of spectral lines by exchange or motion. Journal of the Physical Society of Japan, 9(3), 316-339.
  4. Armstrong, B. H. (1967). Spectrum line profiles: the Voigt function. Journal of Quantitative Spectroscopy and Radiative Transfer, 7(1), 61-88.
  5. Bartoli, M., Rosi, L., Giovannelli, A., Frediani, P., & Frediani, M. (2020). Characterization of bio-oil and bio-char produced by low-temperature microwave-assisted pyrolysis of olive pruning residue using various absorbers. Waste Management & Research, 38(2), 213-225.
  6. Bartoli, M., Giorcelli, M., Jagdale, P., Rovere, M., & Tagliaferro, A. (2020). A review of non-soil biochar applications. Materials, 13(2), 261.
  7. Bartoli, M., Giorcelli, M., & Tagliaferro, A. (Eds.). (2023). Biochar - Productive Technologies, Properties and Applications. doi: 10.5772/intechopen.100763
  8. Brassard, P., Godbout, S., Lévesque, V., Palacios, J. H., Raghavan, V., Ahmed, A., Hogue, R., Jeanne, T., & Verma, M. (2019). Biochar for soil amendment. In Char and carbon materials derived from biomass (pp.109-146), Elsevier, 2019.
  9. Burrows, A., Burgasser, A. J., Kirkpatrick, J. D., Liebert, J., Milsom, J. A., Sudarsky, D., & Hubeny, I. (2002). Theoretical spectral models of T dwarfs at short wavelengths and their comparison with data. The Astrophysical Journal, 573(1), 394.
  10. Burrows, A., & Volobuyev, M. (2003). Calculations of the far-wing line profiles of sodium and potassium in the atmospheres of substellar-mass objects. The Astrophysical Journal, 583(2), 985.
  11. Claramunt, S., Varea, A., Lopez-Diaz, D., Velázquez, M. M., Cornet, A., & Cirera, A. (2015). The importance of interbands on the interpretation of the Raman spectrum of graphene oxide. The Journal of Physical Chemistry C, 119(18), 10123-10129.
  12. Das, C., Tamrakar, S., Kiziltas, A., & Xie, X. (2021). Incorporation of biochar to improve mechanical, thermal and electrical properties of polymer composites. Polymers, 13(16), 2663
  13. Demtröder, W. (1985). Laser spectroscopy: Basic concepts and instrumentation.
  14. De Vries, A. (1970). X-ray photographic studies of liquid crystals I. A cybotactic nematic phase. Molecular Crystals and Liquid Crystals, 10(1-2), 219-236.
  15. Dicke, R. H. (1953). The effect of collisions upon the Doppler width of spectral lines. Physical Review, 89(2), 472.
  16. Failla, M., Alamo, R. G., & Mandelkern, L. (1992). On the analysis of the Raman internal modes of crystalline polyethylene. Polymer testing, 11(2), 151-159.
  17. Ferrari, A. C., & Robertson, J. (2000). Interpretation of Raman spectra of disordered and amorphous carbon. Physical review B, 61(20), 14095.
  18. Ferrari, A. C., & Robertson, J. (Eds.) (2004). Raman spectroscopy in carbons: From nanotubes to diamond”. Philos. Trans. R. Soc. Ser. A 362, 2267.
  19. Ferrari, A. C. (2007). Raman spectroscopy of graphene and graphite: Disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid state communications, 143(1-2), 47-57.
  20. Grant, W. J. C., & Strandberg, M. W. P. (1964). Statistical theory of spin-spin interactions in solids. Physical Review, 135(3A), A715.
  21. Gulley, J. E., Hone, D., Scalapino, D. J., & Silbernagel, B. G. (1970). Exchange Narrowing: Magnetic Resonance Line Shapes and Spin Correlations in Paramagnetic KMn F 3, RbMn F 3, and Mn F 2. Physical Review B, 1(3), 1020.
  22. Han, Y., Wang, J., Dong, Y., Hou, Q., & Pan, J. (2017). The role of structure defects in the deformation of anthracite and their influence on the macromolecular structure. Fuel, 206, 1-9.
  23. Hanel, R., Thurner, S., & Tsallis, C. (2009). Limit distributions of scale-invariant probabilistic models of correlated random variables with the q-Gaussian as an explicit example. The European Physical Journal B, 72(2), 263.
  24. Hasdeo, E. H., Nugraha, A. R., Dresselhaus, M. S., & Saito, R. (2014). Breit-Wigner-Fano line shapes in Raman spectra of graphene. Physical Review B, 90(24), 245140.
  25. Howarth, D. F., Weil, J. A., & Zimpel, Z. (2003). Generalization of the lineshape useful in magnetic resonance spectroscopy. Journal of Magnetic Resonance, 161(2), 215-221.
  26. Ida, T., Ando, M., & Toraya, H. (2000). Extended pseudo-Voigt function for approximating the Voigt profile. Journal of Applied Crystallography, 33(6), 1311-1316.
  27. Jain, V., Biesinger, M. C., & Linford, M. R. (2018). The Gaussian-Lorentzian Sum, Product, and Convolution (Voigt) functions in the context of peak fitting X-ray photoelectron spectroscopy (XPS) narrow scans. Applied Surface Science, 447, 548-553.
  28. Johal, R. S. (1999). An interpretation of Tsallis statistics based on polydispersity. arXiv preprint cond-mat/9909389.
  29. Kakalios, J., Street, R. A., & Jackson, N. W. (1987). Stretched-exponential relaxation arising from dispersive diffusion of hydrogen in amorphous silicon. Physical review letters, 59(9), 1037.
  30. Keresztury, G., & Földes, E. (1990). On the Raman spectroscopic determination of phase distribution in polyethylene. Polymer testing, 9(5), 329-339.
  31. Kirillov, S. (2004). Novel approaches in spectroscopy of interparticle interactions. Vibrational line profiles and anomalous non-coincidence effects. In Novel Approaches to the Structure and Dynamics of Liquids: Experiments, Theories and Simulations; Springer: Berlin/Heidelberg, Germany, 2004; pp. 193–227
  32. Kirillov, S. A. (1999). Time-correlation functions from band-shape fits without Fourier transform. Chemical physics letters, 303(1-2), 37-42.
  33. Kirillov, S. A. (1993). Markovian frequency modulation in liquids. Analytical description and comparison with the stretched exponential approach. Chemical physics letters, 202(6), 459-463.
  34. Kubo, R., & Tomita, K. (1954). A general theory of magnetic resonance absorption. Journal of the Physical Society of Japan, 9(6), 888-919.
  35. Lahfid A., Beyssac O., Deville E., Negro F., Chopin C., & Goffe B. (2010). Evolution of the Raman spectrum of carbonaceous material in low-grade metasediments of the Glarus Alps (Switzerland). Terra Nova, 22, 354–360.
  36. Lünsdorf, N. K., Dunkl, I., Schmidt, B. C., Rantitsch, G., & von Eynatten, H. (2017). Towards a higher comparability of geothermometric data obtained by Raman spectroscopy of carbonaceous material. Part 2: A revised geothermometer. Geostandards and Geoanalytical Research, 41(4), 593-612.
  37. Lünsdorf, N. K., Dunkl, I., Schmidt, B. C., Rantitsch, G., & von Eynatten, H. (2014). Towards a higher comparability of geothermometric data obtained by Raman spectroscopy of carbonaceous material. Part I: evaluation of biasing factors. Geostandards and Geoanalytical Research, 38(1), 73-94.
  38. Lünsdorf, N. K., & Lünsdorf, J. O. (2016). Evaluating Raman spectra of carbonaceous matter by automated, iterative curve-fitting. International Journal of Coal Geology, 160–161, 51–62.
  39. Marschal, A. G., & Verdun, F. R. (1990). Fourier Transforms in NMR, Optical, and Mass Spectrometry, Elsevier, Amsterdam.
  40. Meier, R. J. (2005). On art and science in curve-fitting vibrational spectra. Vibrational spectroscopy, 2(39), 266-269.
  41. Naylor, C. C., Meier, R. J., Kip, B. J., Williams, K. P., Mason, S. M., Conroy, N., & Gerrard, D. L. (1995). Raman spectroscopy employed for the determination of the intermediate phase in polyethylene. Macromolecules, 28(8), 2969-2978.
  42. Naudts, J. (2009). The q-exponential family in statistical physics. Central European Journal of Physics, 7, 405-413.
  43. Paris, O., Zollfrank, C., & Zickler, G. A. (2005). Decomposition and carbonisation of wood biopolymers—a microstructural study of softwood pyrolysis. Carbon, 43(1), 53-66.
  44. Phillips, J. C. (1996). Stretched exponential relaxation in molecular and electronic glasses. Reports on Progress in Physics, 59(9), 1133.
  45. Rotschild, W. G., Cavagnat, R. M., & Perrot, M. (1987). Vibrational dephasing under fractional (“stretched”) exponential modulation in a liquid crystal system. Chemical physics, 118(1), 33-43.
  46. Sadezky, A., Muckenhuber, H., Grothe, H., Niessner, R., & Pöschl, U. (2005). Raman microspectroscopy of soot and related carbonaceous materials: Spectral analysis and structural information. Carbon, 43(8), 1731-1742.
  47. Sousa, D. V. D., Guimarães, L. M., Felix, J. F., Ker, J. C., Schaefer, C. E. R., & Rodet, M. J. (2020). Dynamic of the structural alteration of biochar in ancient Anthrosol over a long timescale by Raman spectroscopy. PloS one, 15(3), e0229447.
  48. Sparavigna, A. C. (2021). Nozioni di q-calcolo nell'ambito del quantum calculus. Zenodo. https://doi.org/10.5281/zenodo.4982846
  49. Sparavigna, A. C. (2022). Entropies and Logarithms. Zenodo. DOI 10.5281/zenodo.7007520
  50. Sparavigna, A. C. (2022). Biochar Shape-Stabilized Phase-Change Materials for Thermal Energy Storage. Social Science Research Network, Rochester, New York, DOI 10.2139/ssrn.4310141
  51. Sparavigna, A. C. (2023). q-Gaussians and the shapes of Raman spectral lines. ChemRxiv. doi:10.26434/chemrxiv-2023-3k422-v4
  52. Svelto, O. (1998). Principles of Lasers, fourth ed., Plenum Press, New York, 1998, pp. 31–50.
  53. Tagliaferro, A., Rovere, M., Padovano, E., Bartoli, M., & Giorcelli, M. (2020). Introducing the novel mixed gaussian-lorentzian lineshape in the analysis of the raman signal of biochar. Nanomaterials, 10(9), 1748.
  54. Tsallis, C. (1988). Possible generalization of Boltzmann-Gibbs statistics. Journal of statistical physics, 52, 479-487.
  55. Tsallis, C., Levy, S. V., Souza, A. M., & Maynard, R. (1995). Statistical-mechanical foundation of the ubiquity of Lévy distributions in nature. Physical Review Letters, 75(20), 3589.
  56. Umarov, S.,Tsallis, C., Steinberg, S. (2008). On a q-Central Limit Theorem Consistent with Nonextensive Statistical Mechanics. Milan J. Math. Birkhauser Verlag. 76: 307–328. doi:10.1007/s00032-008-0087-y. S2CID 55967725.
  57. Van Vleck, J. H. (1948). The dipolar broadening of magnetic resonance lines in crystals. Physical Review, 74(9), 1168.
  58. Wojdyr, M. (2010). Fityk: a general‐purpose peak fitting program. Journal of Applied Crystallography, 43(5‐1), 1126-1128.
  59. Xu, J., He, Q., Xiong, Z., Yu, Y., Zhang, S., Hu, X., Jiang, L., Su, S., Hu, S., Wang, Y. and Xiang, J., 2020. Raman spectroscopy as a versatile tool for investigating thermochemical processing of coal, biomass, and wastes: recent advances and future perspectives. Energy & Fuels, 35(4), pp.2870-2913.
  60. Yamauchi, S., & Kurimoto, Y. (2003). Raman spectroscopic study on pyrolyzed wood and bark of Japanese cedar: temperature dependence of Raman parameters. Journal of wood science, 49(3), 235-240.
  61. Yin, Y., Yin, J., Zhang, W., Tian, H., Hu, Z., Ruan, M., Song, Z. and Liu, L., 2018. Effect of char structure evolution during pyrolysis on combustion characteristics and kinetics of waste biomass. Journal of Energy Resources Technology, 140(7).
  62. Yasim-Anuar, T. A. T., Yee-Foong, L. N., Lawal, A. A., Farid, M. A. A., Yusuf, M. Z. M., Hassan, M. A., & Ariffin, H. (2022). Emerging application of biochar as a renewable and superior filler in polymer composites. RSC advances, 12(22), 13938-13949.
  63. Yuan, X., & Mayanovic, R. A. (2017). An empirical study on Raman peak fitting and its application to Raman quantitative research. Applied spectroscopy, 71(10), 2325-2338.
  64. Zickler, G. A., Smarsly, B., Gierlinger, N., Peterlik, H., & Paris, O. (2006). A reconsideration of the relationship between the crystallite size La of carbons determined by X-ray diffraction and Raman spectroscopy. Carbon, 44(15), 3239-3246.

Cite this Article:

International Journal of Sciences is Open Access Journal.
This article is licensed under a Creative Commons Attribution 4.0 International (CC BY 4.0) License.
Author(s) retain the copyrights of this article, though, publication rights are with Alkhaer Publications.

Search Articles

Issue June 2023

Volume 12, June 2023

Table of Contents

World-wide Delivery is FREE

Share this Issue with Friends:

Submit your Paper