The Routes to Magnetic Graphene, from Decorations with Nanoparticles to the Broken Symmetry of its Honeycomb Lattice Bonds

The Routes to Magnetic Graphene, from Decorations with Nanoparticles to the Broken Symmetry of its Honeycomb Lattice Bonds

Loading document ...
Loading page ...


Author(s): Amelia Carolina Sparavigna

Download Full PDF Read Complete Article

DOI: 10.18483/ijSci.2675 30 80 51-60 Volume 12 - Mar 2023


Pristine graphene is nonmagnetic because the outer electrons in the rings of its honeycomb lattice are merged into sigma- and pi- bonds. To have magnetic graphene, methods have been proposed to break the bond symmetry to obtain unpaired electrons and spins, so that their interaction can turn on the graphene magnetism. These methods are therefore based on the intrinsic nature of graphene. Other methods are based on the extrinsic decoration of graphene layers with magnetic nanoparticles. Here, we discuss the routes to have graphene magnetized in intrinsic and extrinsic manners, and some of its applications. In particular, the nitrogen-doped graphene is considered. The Ruderman–Kittel–Kasuya–Yosida interaction is also proposed in a very concise manner. Short discussion about graphene substitution with nitrogen-doped biochar and iron-decorated biochar is proposed too.


Graphene, Magnetic Graphene, Nitrogen-Doped Graphene, RKKY Interaction, Graphdiyne, Topological frustration, Clar's Goblet, Twisted Graphene, Spintronics, Nitrogen-doped Biochar, Magnetic Iron Oxide Nanoparticles, Fe3O4, Magnetite, Electromagnetic Interference Shielding effectiveness, EMI-SE, Microwaves Absorption


  1. Arora, M., Wahab, M. A., & Saini, P. (2014). Permittivity and electromagnetic interference shielding investigations of activated charcoal loaded acrylic coating compositions. Journal of Polymers, 2014.
  2. Askari, S., Koolivand, H., Pourkhalil, M., Lotfi, R., & Rashidi, A. (2017). Investigation of Fe3O4/Graphene nanohybrid heat transfer properties: Experimental approach. International Communications in Heat and Mass Transfer, 87, 30-39.
  3. Avouris, P., & Xia, F. (2012). Graphene applications in electronics and photonics. Mrs Bulletin, 37(12), 1225-1234.
  4. Bartoli, M., Jagdale, P., Giorcelli, M., Rovere, M., & Tagliaferro, A. (2023). Overview of Nanostructured Carbon-based Catalysts. Nanochemistry: Synthesis, Characterization and Applications, 313.
  5. Bartoli, M., Giorcelli, M., & Tagliaferro, A. (Eds.). (2023). Biochar - Productive Technologies, Properties and Applications. doi: 10.5772/intechopen.100763
  6. Bistritzer, R., & MacDonald, A. H. (2011). Moiré bands in twisted double-layer graphene. Proceedings of the National Academy of Sciences, 108(30), 12233-12237.
  7. Black-Schaffer, A. M. (2010). RKKY coupling in graphene. Physical Review B, 81(20), 205416.
  8. Błoński, P., Tucek, J., Sofer, Z., Mazanek, V., Petr, M., Pumera, M., Otyepka, M., & Zboril, R. (2017). Doping with graphitic nitrogen triggers ferromagnetism in graphene. Journal of the American Chemical Society, 139(8), 3171-3180.
  9. Brassard, P., Godbout, S., Lévesque, V., Palacios, J. H., Raghavan, V., Ahmed, A., Hogue, R., Jeanne, T., & Verma, M. (2019). Biochar for soil amendment. In Char and carbon materials derived from biomass (pp. 109-146), Elsevier, 2019
  10. Chang, Y. P., Ren, C. L., Qu, J. C., & Chen, X. G. (2012). Preparation and characterization of Fe3O4/graphene nanocomposite and investigation of its adsorption performance for aniline and p-chloroaniline. Applied Surface Science, 261, 504-509.
  11. Chu, Z., Zheng, B., Wang, W., Li, Y., Yang, Y., & Yang, Z. (2022). Magnetic Nitrogen–Doped biochar for adsorptive and oxidative removal of antibiotics in aqueous solutions. Separation and Purification Technology, 297, 121508.
  12. Dankworth, J. (2020). Is magnetic graphene possible? Available , archived WaybachMachine
  13. Das, C., Tamrakar, S., Kiziltas, A., & Xie, X. (2021). Incorporation of biochar to improve mechanical, thermal and electrical properties of polymer composites. Polymers, 13(16), 2663.
  14. Devi, G., Priya, R., Tapas Bapu, B. R., Thandaiah Prabu, R., Sathish Kumar, P. J., & Anusha, N. (2022). Role of carbonaceous fillers in electromagnetic interference shielding behavior of polymeric composites: A review. Polymer Composites, 43(11), 7701-7723.
  15. Fan, X. J., & Li, X. (2012). Preparation and magnetic property of multiwalled carbon nanotubes decorated by Fe3O4 nanoparticles. New Carbon Materials, 27(2), 111-116.
  16. Ghogia, A. C., Romero Millán, L. M., White, C. E., & Nzihou, A. (2022). Synthesis and growth of green graphene from biochar revealed by magnetic properties of iron catalyst. ChemSusChem, 16(3), e202201864.
  17. Giorcelli, M., & Bartoli, M. (2019). Carbon nanostructures for actuators: An overview of recent developments. Actuators, 8(2), 46.
  18. Giorcelli, M., Das, O., Sas, G., Försth, M., & Bartoli, M. (2021). A review of bio-oil production through microwave-assisted pyrolysis. Processes, 9(3), 561.
  19. González-Herrero, H., Gómez-Rodríguez, J.M., Mallet, P., Moaied, M., Palacios, J.J., Salgado, C., Ugeda, M.M., Veuillen, J.Y., Yndurain, F., & Brihuega, I. (2016). Atomic-scale control of graphene magnetism by using hydrogen atoms. Science, 352(6284), pp.437-441.
  20. Guo, L., Ye, P., Wang, J., Fu, F., & Wu, Z. (2015). Three-dimensional Fe3O4-graphene macroscopic composites for arsenic and arsenate removal. Journal of Hazardous Materials, 298, 28-35.
  21. Han, J., & Kim, H. (2008). The reduction and control technology of tar during biomass gasification / pyrolysis: an overview. Renewable and sustainable energy reviews, 12(2), 397-416.
  22. Han, W., Kawakami, R. K., Gmitra, M., & Fabian, J. (2014). Graphene spintronics. Nature nanotechnology, 9(10), 794-807.
  23. He, Y., Yi, C., Zhang, X., Zhao, W., & Yu, D. (2021). Magnetic graphene oxide: Synthesis approaches, physicochemical characteristics, and biomedical applications. TrAC Trends in Analytical Chemistry, 136, 116191.
  24. Hu, W., Zhang, J., Liu, B., Zhang, C., Zhao, Q., Sun, Z., Cao, H., & Zhu, G. (2021). Synergism between lignin, functionalized carbon nanotubes and Fe3O4 nanoparticles for electromagnetic shielding effectiveness of tough lignin-based polyurethane. Composites Communications, 24, p.100616.
  25. Hu, J., Liang, C., Li, J., Liang, Y., Li, S., Li, G., Wang, Z., & Dong, D. (2021). Flexible reduced graphene oxide@ Fe3O4/silicone rubber composites for enhanced microwave absorption. Applied Surface Science, 570, 151270.
  26. IUPAC. Compendium of Chemical Terminology, 2nd ed. (the "Gold Book"). Compiled by A. D. McNaught and A. Wilkinson. Blackwell Scientific Publications, Oxford (1997). Online version (2019-) created by S. J. Chalk. ISBN 0-9678550-9-8.
  27. Kassaee, M. Z., Motamedi, E., & Majdi, M. (2011). Magnetic Fe3O4-graphene oxide/polystyrene: fabrication and characterization of a promising nanocomposite. Chemical Engineering Journal, 172(1), 540-549.
  28. Katsnelson, M. I. (2016). "graphene". Encyclopedia Britannica, 8 Jan. 2016, Available link: Accessed 19 February 2023.
  29. Kavitha, M. K., & Jaiswal, M. (2016). Graphene: A review of optical properties and photonic applications. Asian J. Phys, 25(7), 809-831.
  30. Kogan, E. (2011). RKKY interaction in graphene. Physical Review B, 84(11), 115119.
  31. Kogan, E. (2013). RKKY Interaction in Gapped or Doped Graphene, Graphene, 2(1), 8-12.
  32. Kogan, E. (2019). RKKY interaction in graphene at finite temperature. Journal of Carbon Research C, 5(2), 14.
  33. Kogan, E. (2022). Graphene for Electronics. Nanomaterials, 12(24), 4359.
  34. Lee, J., Kim, K. H., & Kwon, E. E. (2017). Biochar as a catalyst. Renewable and Sustainable Energy Reviews, 77, 70-79.
  35. Li, X.F., Lian, K.Y., Liu, L., Wu, Y., Qiu, Q., Jiang, J., Deng, M., & Luo, Y. (2016). Unraveling the formation mechanism of graphitic nitrogen-doping in thermally treated graphene with ammonia. Scientific Reports, 6(1), 23495.
  36. Li, Z., Li, X., Zong, Y., Tan, G., Sun, Y., Lan, Y., He, M., Ren, Z., & Zheng, X. (2017). Solvothermal synthesis of nitrogen-doped graphene decorated by superparamagnetic Fe3O4 nanoparticles and their applications as enhanced synergistic microwave absorbers. Carbon, 115, pp.493-502.
  37. Lian, P., Zhu, X., Xiang, H., Li, Z., Yang, W., & Wang, H. (2010). Enhanced cycling performance of Fe3O4–graphene nanocomposite as an anode material for lithium-ion batteries. Electrochimica Acta, 56(2), 834-840.
  38. Liu, Y., Huang, H., Gan, D., Guo, L., Liu, M., Chen, J., Deng, F., Zhou, N., Zhang, X., & Wei, Y. (2018). A facile strategy for preparation of magnetic graphene oxide composites and their potential for environmental adsorption. Ceramics International, 44(15), pp.18571-18577.
  39. Lv, Q., Si, W., He, J., Sun, L., Zhang, C., Wang, N., Yang, Z., Li, X., Wang, X., Deng, W., & Long, Y. (2018). Selectively nitrogen-doped carbon materials as superior metal-free catalysts for oxygen reduction. Nature Communications, 9(1), p.3376.
  40. Major, I., Pin, J. M., Behazin, E., Rodriguez-Uribe, A., Misra, M., & Mohanty, A. (2018). Graphitization of Miscanthus grass biocarbon enhanced by in situ generated FeCo nanoparticles. Green Chemistry, 20(10), 2269-2278.
  41. Manna, R., & Srivastava, S. K. (2021). Reduced graphene oxide/Fe3O4/polyaniline ternary composites as a superior microwave absorber in the shielding of electromagnetic pollution. ACS omega, 6(13), 9164-9175.
  42. Miao, Q., Wang, L., Liu, Z., Wei, B., Xu, F., & Fei, W. (2016). Magnetic properties of N-doped graphene with high Curie temperature. Scientific reports, 6(1), 1-10.
  43. Mishra, S., Beyer, D., Eimre, K., Kezilebieke, S., Berger, R., Gröning, O., Pignedoli, C.A., Müllen, K., Liljeroth, P., Ruffieux, P., & Feng, X. (2020). Topological frustration induces unconventional magnetism in a nanographene. Nature nanotechnology, 15(1), pp.22-28.
  44. Ni, S., Lin, S., Pan, Q., Yang, F., Huang, K., & He, D. (2009). Hydrothermal synthesis and microwave absorption properties of Fe3O4 nanocrystals. Journal of Physics D: Applied Physics, 42(5), 055004.
  45. Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Katsnelson, M.I., Grigorieva, I.V., Dubonos, S., & Firsov, A. (2005). Two-dimensional gas of massless Dirac fermions in graphene. Nature, 438(7065), 197-200.
  46. Ohldag, H., Tyliszczak, T., Höhne, R., Spemann, D., Esquinazi, P., Ungureanu, M., & Butz, T. (2007). π-electron ferromagnetism in metal-free carbon probed by soft x-ray dichroism. Physical review letters, 98(18), 187204.
  47. Ok, Y. S., Uchimiya, S. M., Chang, S. X., & Bolan, N. (Eds.). (2015). Biochar: Production, characterization, and applications. CRC press.
  48. Ok, Y. S., Tsang, D. C., Bolan, N., & Novak, J. M. (Eds.). (2018). Biochar from biomass and waste: fundamentals and applications. Elsevier.
  49. Papageorgiou, D. G., Kinloch, I. A., & Young, R. J. (2015). Graphene/elastomer nanocomposites. Carbon, 95, 460-484.
  50. Peng, F., Dai, M., Wang, Z., Guo, Y., & Zhou, Z. (2022). Progress in graphene-based magnetic hybrids towards highly efficiency for microwave absorption. Journal of Materials Science & Technology, 106, 147-161.
  51. Pistilli, M. (2022). What Factors Impact Graphene Cost? Published in, at link and archived WaybackMachine .
  52. Quan, L., Qin, F. X., Estevez, D., Wang, H., & Peng, H. X. (2017). Magnetic graphene for microwave absorbing application: Towards the lightest graphene-based absorber. Carbon, 125, 630-639.
  53. Qin, M., Zhang, L., & Wu, H. (2022). Dielectric loss mechanism in electromagnetic wave absorbing materials. Advanced Science, 9(10), 2105553.
  54. Razaq, A., Bibi, F., Zheng, X., Papadakis, R., Jafri, S. H. M., & Li, H. (2022). Review on graphene-, graphene oxide-, reduced graphene oxide-based flexible composites: From fabrication to applications. Materials, 15(3), 1012.
  55. Ruderman, M. A., & Kittel, C. (1954). Indirect exchange coupling of nuclear magnetic moments by conduction electrons. Physical Review, 96(1), 99.
  56. Shao, Y., Zhang, S., Engelhard, M.H., Li, G., Shao, G., Wang, Y., Liu, J., Aksay, I.A., Lin, Y. (2010). Nitrogen-doped graphene and its electrochemical applications. Journal of Materials Chemistry, 20(35), pp.7491-7496.
  57. Sharpe, A.L., Fox, E.J., Barnard, A.W., Finney, J., Watanabe, K., Taniguchi, T., Kastner, M.A., & Goldhaber-Gordon, D. (2019). Emergent ferromagnetism near three-quarters filling in twisted bilayer graphene. Science, 365(6453), 605-608.
  58. Sherafati, M., & Satpathy, S. (2011). Analytical expression for the RKKY interaction in doped graphene. Physical Review B, 84(12), 125416.
  59. Sherafati, M., & Satpathy, S. (2012). On the Ruderman-Kittel-Kasuya-Yosida Interaction in Graphene. In AIP Conference Proceedings (Vol. 1461, No. 1, pp. 24-33). American Institute of Physics.
  60. Sherlala, A. I. A., Raman, A. A. A., Bello, M. M., & Asghar, A. (2018). A review of the applications of organo-functionalized magnetic graphene oxide nanocomposites for heavy metal adsorption. Chemosphere, 193, 1004-1017.
  61. Shu, R., Li, X., Tian, K., & Shi, J. (2022). Fabrication of bimetallic metal-organic frameworks derived Fe3O4/C decorated graphene composites as high-efficiency and broadband microwave absorbers. Composites Part B: Engineering, 228, 109423.
  62. Sparavigna, A. (2002). Influence of isotope scattering on the thermal conductivity of diamond. Physical Review B, 65(6), 064305.
  63. Sparavigna, A., & Ravetti, A. (2005). Thermal conductivity in nanotubes and nanotube bundles. In Recent research developments in physics (Volume 6 part I (2005)) (pp. 173-183).
  64. Sparavigna, A. (2008). Lattice specific heat of carbon nanotubes. Journal of thermal analysis and calorimetry, 93(3), 983-986.
  65. Sparavigna, A. C. (2023). Iron Oxide Fe3O4 Nanoparticles with ICPs and Biochar to Improve Electromagnetic Shielding Performance. SSRN: Social Science Research Network Journal. DOI 10.2139/ssrn.4331866
  66. Su, J., Cao, M., Ren, L., & Hu, C. (2011). Fe3O4–graphene nanocomposites with improved lithium storage and magnetism properties. The Journal of Physical Chemistry C, 115(30), 14469-14477.
  67. Tang, N., Tang, T., Pan, H., Sun, Y., Chen, J., & Du, Y. (2020). Magnetic properties of graphene. In Spintronic 2D Materials (pp. 137-161). Elsevier.
  68. Taylor-Smith, K. (2022). The difference between rebar and pristine graphene. AZoM. Retrieved on February 15, 2023 from
  69. Tombros, N., Jozsa, C., Popinciuc, M., Jonkman, H. T., & Van Wees, B. J. (2007). Electronic spin transport and spin precession in single graphene layers at room temperature. Nature, 448(7153), 571-574.
  70. Ugeda, M. M., Brihuega, I., Guinea, F., & Gómez-Rodríguez, J. M. (2010). Missing atom as a source of carbon magnetism. Physical Review Letters, 104(9), 096804.
  71. Vesel, A., Zaplotnik, R., Primc, G., & Mozetič, M. (2020). A review of strategies for the synthesis of N-doped graphene-like materials. Nanomaterials, 10(11), 2286.
  72. Wang, X., Krommenhoek, P.J., Bradford, P.D., Gong, B., Tracy, J.B., Parsons, G.N., Luo, T.J.M., & Zhu, Y.T. (2011). Coating alumina on catalytic iron oxide nanoparticles for synthesizing vertically aligned carbon nanotube arrays. ACS applied materials & interfaces, 3(11), 4180-4184.
  73. Wang, X., Lu, Y., Zhu, T., Chang, S., & Wang, W. (2020). CoFe2O4/N-doped reduced graphene oxide aerogels for high-performance microwave absorption. Chemical Engineering Journal, 388, 124317.
  74. Yang, G., Li, L., Lee, W. B., & Ng, M. C. (2018). Structure of graphene and its disorders: a review. Science and technology of advanced materials, 19(1), 613-648.
  75. Yao, Y., Miao, S., Liu, S., Ma, L. P., Sun, H., & Wang, S. (2012). Synthesis, characterization, and adsorption properties of magnetic Fe3O4@ graphene nanocomposite. Chemical engineering journal, 184, 326-332.
  76. Yasim-Anuar, T. A. T., Yee-Foong, L. N., Lawal, A. A., Farid, M. A. A., Yusuf, M. Z. M., Hassan, M. A., & Ariffin, H. (2022). Emerging application of biochar as a renewable and superior filler in polymer composites. RSC advances, 12(22), 13938-13949.
  77. Yoo, S., Chung, C. C., Kelley, S. S., & Park, S. (2018). Graphitization behavior of loblolly pine wood investigated by in situ high temperature X-ray diffraction. ACS Sustainable Chemistry & Engineering, 6(7), 9113-9119.
  78. Yutomo, E. B., Noor, F. A., & Winata, T. (2021). Effect of the number of nitrogen dopants on the electronic and magnetic properties of graphitic and pyridinic N-doped graphene–a density-functional study. RSC advances, 11(30), 18371-18380.
  79. Yu, J., Tang, L., Pang, Y., Zeng, G., Wang, J., Deng, Y., Liu, Y., Feng, H. Chen, S., & Ren, X. (2019). Magnetic nitrogen-doped sludge-derived biochar catalysts for persulfate activation: Internal electron transfer mechanism. Chemical Engineering Journal, 364, 146-159.
  80. Wang, X., Li, Z., Qu, Y., Yuan, T., Wang, W., Wu, Y., & Li, Y. (2019). Review of metal catalysts for oxygen reduction reaction: from nanoscale engineering to atomic design. Chem, 5(6), 1486-1511.
  81. Zhang, F., Yang, K., Liu, G., Chen, Y., Wang, M., Li, S., & Li, R. (2022). Recent Advances on Graphene: Synthesis, Properties, and Applications. Composites Part A: Applied Science and Manufacturing, 107051.
  82. Zhang, H., Xia, B., & Gao, D. (2023). Recent advances of ferromagnetism in traditional antiferromagnetic transition metal oxides. Journal of Magnetism and Magnetic Materials, 170428.
  83. Zheng, J., Lv, H., Lin, X., Ji, G., Li, X., & Du, Y. (2014). Enhanced microwave electromagnetic properties of Fe3O4/graphene nanosheet composites. Journal of alloys and compounds, 589, 174-181.
  84. Zhu, L., Zeng, X., Li, X., Yang, B., & Yu, R. (2017). Hydrothermal synthesis of magnetic Fe3O4/graphene composites with good electromagnetic microwave absorbing performances. Journal of Magnetism and Magnetic Materials, 426, 114-120.

Cite this Article:

International Journal of Sciences is Open Access Journal.
This article is licensed under a Creative Commons Attribution 4.0 International (CC BY 4.0) License.
Author(s) retain the copyrights of this article, though, publication rights are with Alkhaer Publications.

Search Articles

Issue June 2023

Volume 12, June 2023

Table of Contents

World-wide Delivery is FREE

Share this Issue with Friends:

Submit your Paper