Raman Spectroscopy of Siderite with q-Gaussian and split-q-Gaussian Analyses

Raman Spectroscopy of Siderite with q-Gaussian and split-q-Gaussian Analyses

Loading document ...
Page
of
Loading page ...

Author(s)

Author(s): Amelia Carolina Sparavigna

Download Full PDF Read Complete Article

DOI: 10.18483/ijSci.2747 9 16 8-21 Volume 13 - Feb 2024

Abstract

In a previous review, ChemRxiv, 2023, we have considered the iron oxides and their related Raman spectra; in the review, fingerprints of Magnetite, Maghemite, Hematite, Goethite, Lepidocrocite, Akaganeite and Siderite have been given and the q-Gaussian fitting of some Magnetite, Hematite and Lepidocrocite Raman bands has been proposed too. Here we consider one of the Raman bands of Siderite and its fitted q-Gaussian and split-q-Gaussian functions in depth. In the RRUFF database six natural siderite samples are included, and for three of them we can find Raman spectra obtained with different excitation lasers. These spectra allow us to investigate in detail the behavior of the fitted q-Gaussian curves. A discussion about the origin of asymmetry is also proposed, relevant for the use of q-Gaussians and the interpretation of them in the framework of Kubo approach.

Keywords

Raman Spectroscopy, Magnetic Iron Oxide Nanoparticles, Siderite, Q-Gaussian Tsallis Functions, Kubo Functions

References

  1. Adampourezare, M., Hasanzadeh, M., Hoseinpourefeizi, M. A., & Seidi, F. (2023). Iron/iron oxide-based magneto-electrochemical sensors/biosensors for ensuring food safety: recent progress and challenges in environmental protection. RSC advances, 13(19), 12760-12780.
  2. Buzgar N., Apopei A. I., & Buzatu A. (2009). Romanian Database of Raman Spectroscopy (http://rdrs.ro).
  3. Campbell, I. H., & Fauchet, P. M. (1986). The effects of microcrystal size and shape on the one phonon Raman spectra of crystalline semiconductors. Solid State Communications, 58(10), 739-741.
  4. Capitani, G. C., Di Pierro, S., & Tempesta, G. (2007). The 6H-SiC structure model: Further refinement from SCXRD data from a terrestrial moissanite. American Mineralogist, 92(2-3), 403-407.
  5. Devi, S. (2021). Asymmetric Tsallis distributions for modeling financial market dynamics. Physica A: Statistical Mechanics and Its Applications, 578, 126109
  6. El Mendili, Y., Bardeau, J. F., Randrianantoandro, N., Grasset, F., & Greneche, J. M. (2012). Insights into the mechanism related to the phase transition from γ-Fe2O3 to α-Fe2O3 nanoparticles induced by thermal treatment and laser irradiation. The Journal of Physical Chemistry C, 116(44), 23785-23792.
  7. El Mendili, Y., Abdelouas, A., Ait Chaou, A., Bardeau, Jf., & Schlegel, Ml (2014). Carbon steel corrosion in clay-rich environment. Corrosion Science, 2014, 88, 56-65
  8. El Mendili, Y. (2017). Raman spectrum of goethite from granite SOLSA sample. Personal communication to ROD, 2017
  9. El Mendili, Y., Vaitkus, A., Merkys, A., Gražulis, S., Chateigner, D., Mathevet, F., Gascoin, S., Petit, S., Bardeau, J.-F., Zanatta, M., Secchi, M., Mariotto, G., Kumar, A., Cassetta, M., Lutterotti, L., Borovin, E., Orberger, B., Simon, P., Hehlen, B., & Le Guen, M. (2019). Raman Open Database: first interconnected Raman–X-ray diffraction open-access resource for material identification. Journal of Applied Crystallography, 52(3), 618-625. doi: 10.1107/s1600576719004229
  10. Fu, R., Ma, Z., Zhao, H., Jin, H., Tang, Y., He, T., Ding, Y., Zhang, J., & Ye, D. (2023). Research progress in iron-based nanozymes: catalytic mechanisms, classification, and biomedical applications. Analytical Chemistry, 95(29), 10844-10858.
  11. Gao, Y., & Yin, P. (2017). Origin of asymmetric broadening of Raman peak profiles in Si nanocrystals. Scientific Reports, 7(1), 43602.
  12. Hanel, R., Thurner, S., & Tsallis, C. (2009). Limit distributions of scale-invariant probabilistic models of correlated random variables with the q-Gaussian as an explicit example. The European Physical Journal B, 72(2), 263.
  13. Hanesch, M. (2009). Raman spectroscopy of iron oxides and (oxy) hydroxides at low laser power and possible applications in environmental magnetic studies. Geophysical Journal International, 177(3), 941-948.
  14. Hasanzadeh, M., Shadjou, N., & de la Guardia, M. (2015). Iron and iron-oxide magnetic nanoparticles as signal-amplification elements in electrochemical biosensing. TrAC Trends in Analytical Chemistry, 72, 1-9.
  15. Korepanov, V. I., & Sedlovets, D. M. (2018). An asymmetric fitting function for condensed-phase Raman spectroscopy. Analyst, 143(11), 2674-2679.
  16. Kubo, R. (1969). A stochastic theory of line shape. Advances in chemical physics, 15, 101-127.
  17. Lafuente, B., Downs, R. T., Yang, H., & Stone, N. (2015). 1. The power of databases: The RRUFF project. In Highlights in mineralogical crystallography (pp. 1-30). De Gruyter (O).
  18. Liang, W., Chen, L., Wang, L., Yin, Y., Li, Z., & Li, H. (2018). High pressure synthesis of siderite (FeCO3) and its thermal expansion coefficient. High Temperatures-High Pressures, 47(2).
  19. Laurent, S., Forge, D., Port, M., Roch, A., Robic, C., Vander Elst, L., & Muller, R. N. (2008). Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chemical reviews, 108(6), 2064-2110.
  20. Müller, J., Speziale, S., Efthimiopoulos, I., Jahn, S., & Koch-Müller, M. (2016). Raman spectroscopy of siderite at high pressure: Evidence for a sharp spin transition. American Mineralogist, 101(12), 2638-2644.
  21. Naudts, J. (2009). The q-exponential family in statistical physics. Central European Journal of Physics, 7, 405-413.
  22. Nemanich, R. J., Solin, S. A., & Martin, R. M. (1981). Light scattering study of boron nitride microcrystals. Physical Review B, 23(12), 6348.
  23. Omini, M., & Sparavigna, A. (2000). Role of grain boundaries as phonon diffraction gratings in the theory of thermal conductivity. Physical Review B, 61(10), 6677.
  24. Prawer, S., & Nemanich, R. J. (2004). Raman spectroscopy of diamond and doped diamond. Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 362(1824), 2537-2565.
  25. Richter, H., Wang, Z. P., & Ley, L. (1981). The one phonon Raman spectrum in microcrystalline silicon. Solid State Communications, 39(5), 625-629.
  26. Rohmfeld, S., Hundhausen, M., & Ley, L. (1998). Raman scattering in polycrystalline 3 C− SiC: Influence of stacking faults. Physical Review B, 58(15), 9858.
  27. Rull, F., Martinez‐Frias, J., Sansano, A., Medina, J., & Edwards, H. G. M. (2004). Comparative micro‐Raman study of the Nakhla and Vaca Muerta meteorites. Journal of Raman Spectroscopy, 35(6), 497-503.
  28. Rutt, H. N., & Nicola, J. H. (1974). Raman spectra of carbonates of calcite structure. Journal of Physics C: Solid State Physics, 7(24), 4522.
  29. Shukla, V. (2019). Review of electromagnetic interference shielding materials fabricated by iron ingredients. Nanoscale Advances, 1(5), 1640-1671.
  30. Sparavigna, A. C. (2023). Raman Spectroscopy of the Iron Oxides in the Form of Minerals, Particles and Nanoparticles. ChemRxiv. Cambridge: Cambridge Open Engage; 2023. https://doi.org/10.26434/chemrxiv-2023-22kh4-v2
  31. Sparavigna A. C. (2023). Iron Oxide Fe3O4 Nanoparticles for Electromagnetic Shielding. ChemRxiv. Cambridge: Cambridge Open Engage; 2023. https://doi.org/10.26434/chemrxiv-2023-g9bkz-v2
  32. Sparavigna, A. C. (2023). Iron Oxide Fe3O4 Nanoparticles with Intrinsic Conducting Polymers and Biochar to Improve the Electromagnetic Shielding Performance of Light Weight Absorption-Type Materials. International Journal of Sciences, 12(08), 5–23. https://doi.org/10.18483/ijsci.2709
  33. Sparavigna, A. C. (2024). Kubo Lineshape and its Fitted q-Gaussian Tsallis Function. International Journal of Sciences, 13(01), 1-9. DOI: 10.18483/ijSci.2742
  34. Sparavigna, A. C. (2023). q-Gaussian Tsallis Line Shapes and Raman Spectral Bands. International Journal of Sciences, 12(03), 27-40. http://dx.doi.org/10.18483/ijSci.2671
  35. Sparavigna, A. C. (2023). q-Gaussian Tsallis Line Shapes for Raman Spectroscopy (June 7, 2023). SSRN Electronic Journal. http://dx.doi.org/10.2139/ssrn.4445044
  36. Sparavigna, A. C. (2023). Generalizing asymmetric and pseudo-Voigt functions by means of q-Gaussian Tsallis functions to analyze the wings of Raman spectral bands. ChemRxiv. Cambridge: Cambridge Open Engage, https://doi.org/10.26434/chemrxiv-2023-pk99f
  37. Sparavigna A. C. (2023). Tsallis q-Gaussian function as fitting lineshape for Graphite Raman bands. ChemRxiv. Cambridge: Cambridge Open Engage, https://doi.org/10.26434/chemrxiv-2023-bwnmw
  38. Sparavigna, A. C. (2023). Asymmetric q-Gaussian functions to fit the Raman LO mode band in Silicon Carbide. ChemRxiv. Cambridge: Cambridge Open Engage. https://doi.org/10.26434/chemrxiv-2023-f8gk3
  39. Sparavigna, A. (2023). Q-Gaussians and the SERS Spectral Bands of L-Cysteine and Cysteamine. ChemRxiv. Cambridge: Cambridge Open Engage, https://doi.org/10.26434/chemrxiv-2023-9swp9-v2
  40. Tokmakoff, A. (2009). MIT Dept. of Chemistry, Lecture Notes, Archive
  41. Tokmakoff, A. (2014). Time-dependent quantum mechanics and spectroscopy. Univ. Chicago. http://tdqms.uchicago.edu/
  42. Tsallis, C. (1988). Possible generalization of Boltzmann-Gibbs statistics. Journal of statistical physics, 52, 479-487.
  43. Umarov, S., Tsallis, C., Steinberg, S. (2008). On a q-Central Limit Theorem Consistent with Nonextensive Statistical Mechanics. Milan J. Math. Birkhauser Verlag. 76: 307–328. doi:10.1007/s00032-008-0087-y. S2CID 55967725.
  44. Urbanova, V., Magro, M., Gedanken, A., Baratella, D., Vianello, F., & Zboril, R. (2014). Nanocrystalline iron oxides, composites, and related materials as a platform for electrochemical, magnetic, and chemical biosensors. Chemistry of Materials, 26(23), 6653-6673.
  45. Vallabani, N. S., & Singh, S. (2018). Recent advances and future prospects of iron oxide nanoparticles in biomedicine and diagnostics. 3 Biotech, 8(6), 279.
  46. Vepřek, S., Sarott, F. A., & Iqbal, Z. (1987). Effect of grain boundaries on the Raman spectra, optical absorption, and elastic light scattering in nanometer-sized crystalline silicon. Physical Review B, 36(6), 3344.
  47. Vetter, W. M., & Dudley, M. (2004). Characterization of defects in 3C-silicon carbide crystals. Journal of crystal growth, 260(1-2), 201-208.
  48. Wieligor, M., Wang, Y., & Zerda, T. W. (2005). Raman spectra of silicon carbide small particles and nanowires. Journal of Physics: Condensed Matter, 17(15), 2387.
  49. Wyckoff, R. W. G. (1963). Second edition. Crystal Structures, 1963, 1, 290-295, Interscience Publishers, New York.

Cite this Article:

International Journal of Sciences is Open Access Journal.
This article is licensed under a Creative Commons Attribution 4.0 International (CC BY 4.0) License.
Author(s) retain the copyrights of this article, though, publication rights are with Alkhaer Publications.

Search Articles

Issue June 2024

Volume 13, June 2024


Table of Contents



World-wide Delivery is FREE

Share this Issue with Friends:


Submit your Paper