Attenuated Total Reflectance Infrared Spectra of Carbonate Minerals, Deconvoluted by Means of q-BWF Functions

Attenuated Total Reflectance Infrared Spectra of Carbonate Minerals, Deconvoluted by Means of q-BWF Functions

Loading document ...
Page
of
Loading page ...

Author(s)

Author(s): Amelia Carolina Sparavigna

Download Full PDF Read Complete Article

DOI: 10.18483/ijSci.2803 31 73 76-83 Volume 13 - Sep 2024

Abstract

Here we consider some carbonate minerals and their attenuated total reflectance (ATR) infrared spectra, that we can find in RRUFF database. We apply the q-BWF functions to deconvolute the components of the spectra. The q-BWF functions are the asymmetric line shapes that A. C. Sparavigna defined in 2023, to generalize the BWF (Breit-Wigner-Fano) functions. Nearby all the ATR spectra that we will consider are characterized by the presence of a large peak. We will show that, in the case of aragonite and bastnäsite-(Ce), only one q-BWF function is enough for fitting this main peak.

Keywords

Infrared Spectroscopy, ATR Spectroscopy, q-Gaussian Functions, q-BWF Functions

References

  1. Chukanov, N.V. (2014). IR Spectra of Minerals and Reference Samples Data. Springer Geochemistry/Mineralogy. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7128-4_2
  2. Ferrari, A. C., & Robertson, J. (2000). Interpretation of Raman spectra of disordered and amorphous
  3. carbon. Physical Review B 61: 14095–14107.
  4. Gaffey, S. J. (1986). Spectral reflectance of carbonate minerals in the visible and near infrared (0.35-2.55 microns); calcite, aragonite, and dolomite. American Mineralogist, 71(1-2), 151-162.
  5. Gunasekaran, S., Anbalagan, G., & Pandi, S. (2006). Raman and infrared spectra of carbonates of calcite structure. Journal of Raman Spectroscopy: An International Journal for Original Work in all Aspects of Raman Spectroscopy, Including Higher Order Processes, and also Brillouin and Rayleigh Scattering, 37(9), 892-899.
  6. Hanel, R., Thurner, S., & Tsallis, C. (2009). Limit distributions of scale-invariant probabilistic models of correlated random variables with the q-Gaussian as an explicit example. The European Physical Journal B, 72(2), 263.
  7. Kendix, E. L. (2009). Trasmission and Reflection (ATR) Far-Infrared Spectroscopy Applied in the Analysis of Cultural Heritage Materials. Ph.D. Thesis, Alma Mater Studiorum Università di Bologna, Bologna, Italy.
  8. Khoshhesab, Z. M. (2012). Reflectance IR spectroscopy. Infrared spectroscopy-Materials science, engineering and technology, 11, 233-244.
  9. Kim, Y., Caumon, M. C., Barres, O., Sall, A., & Cauzid, J. (2021). Identification and composition of carbonate minerals of the calcite structure by Raman and infrared spectroscopies using portable devices. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 261, 119980.
  10. Lafuente, B., Downs, R. T., Yang, H., & Stone, N. (2015). 1. The power of databases: The RRUFF project. In Highlights in mineralogical crystallography (pp. 1-30). De Gruyter (O).
  11. Sparavigna, A. C. (2023). q-Gaussian Tsallis Line Shapes and Raman Spectral Bands. Int. J. Sciences, 12(3), 27-40. https://doi.org/10.18483/ijsci.2671
  12. Sparavigna, A. C. (2023). q-Gaussian Tsallis Line Shapes for Raman Spectroscopy (June 7, 2023). Available at SSRN: https://ssrn.com/abstract=4445044 or http://dx.doi.org/10.2139/ssrn.4445044
  13. Sparavigna, A. C. (2023). Asymmetric q-Gaussian functions generalizing the Breit-Wigner-Fano functions. Zenodo. https://doi.org/10.5281/zenodo.8356165
  14. Sparavigna, A. C. (2023). SERS Spectral Bands of L-Cysteine, Cysteamine and Homocysteine Fitted by Tsallis q-Gaussian Functions. Int. J. Sciences, 12(09), 14-24. http://dx.doi.org/10.18483/ijSci.2721
  15. Sparavigna, A. C. (2024). Molybdenum Disulfide MoS2 and the q-BWF line shapes (Raman Spectroscopy). ChemRxiv. doi:10.26434/chemrxiv-2024-cprs3-v3
  16. Sparavigna, A. C. (2024). Barium Titanate BaTiO3 Raman Spectra and their deconvolution with q-BWF functions. ChemRxiv. doi:10.26434/chemrxiv-2024-dchgr
  17. Sparavigna, A. C. (2024). q-Gaussian and q-BWF functions for the deconvolution of Raman and infrared spectra of Calcite. ChemRxiv. doi:10.26434/chemrxiv-2024-nsmch
  18. Sparavigna, A. C. (2024). q-BWF functions to deconvolute the attenuated total reflectance infrared spectra of the barite-group minerals. ChemRxiv. doi:10.26434/chemrxiv-2024-9x1jz
  19. Subramanian, A., & Rodriguez-Saona, L. (2009). Chapter 7-Fourier Transform Infrared (FTIR) Spectroscopy, in Infrared Spectroscopy for Food Quality Analysis and Control, D. Sun, Ed.
  20. Tsallis, C. (1988). Possible generalization of Boltzmann-Gibbs statistics. Journal of statistical physics, 52, 479-487.
  21. White, F. (1974). The Infrared Spectra of Minerals, Farmer V.C. ed., Mineralogical society monograph, 4, 331-363.
  22. Wojdyr, M. (2010). Fityk: a general-purpose peak fitting program. Journal of applied crystallography, 43(5), 1126-1128.

Cite this Article:

International Journal of Sciences is Open Access Journal.
This article is licensed under a Creative Commons Attribution 4.0 International (CC BY 4.0) License.
Author(s) retain the copyrights of this article, though, publication rights are with Alkhaer Publications.

Search Articles

Issue June 2024

Volume 13, June 2024


Table of Contents



World-wide Delivery is FREE

Share this Issue with Friends:


Submit your Paper