Phytochemical Screening and Antioxidant Activity of “KROATISANE”, a Traditional Recipe Used in the Management of COVID-19 Symptoms

Phytochemical Screening and Antioxidant Activity of “KROATISANE”, a Traditional Recipe Used in the Management of COVID-19 Symptoms

Loading document ...
Page
of
Loading page ...

Author(s)

Author(s): Coulibaly B., Yao K. B., Diabagate A., Kroa E.

Download Full PDF Read Complete Article

DOI: 10.18483/ijSci.2817 6 5 1-6 Volume 14 - Oct 2025

Abstract

In Côte d'Ivoire, more than 340,000 infected people and more than 15,000 deaths have been recorded during the COVID-19 pandemic. In order to make a significant contribution to this problem, practitioners of traditional medicine (PMT) have used in Côte d'Ivoire a medicinal formulation composed of leaves of Alchornea cordifolia (euphorbiaceae), the bark of Alstonia boonei (apocynaceae), leafy stems of Ocimum gratissimum (lamiaceae), and rhizomes of Zingiber officinale (zingiberaceae) named “Kroatisane” used for the management of symptoms of COVID-19. The present study aims to determine the phytochemical composition and evaluate the antioxidant activity of the aqueous extract of “Kroatisane”. To do this, an aqueous extract of the four medicinal plants was prepared. Classes of secondary metabolites were identified according to the methods described by Evans (2009) and several other authors. Antioxidant activity was determined by that of free radical scavenging using DPPH. The aqueous extract of “Kroatisane” (KTI) showed DPPH scavenging activity dependent on its effective concentration (EC50) of 100.3 μg/mL. This antioxidant activity has an inhibitory concentration (IC50) of 100.3μg/mL compared to that of ascorbic acid of 3.025 μg/mL and the IC50 of gallic acid of 0.8968 μg/mL. The activity of the aqueous extract of “Kroatisane” is 33 and 104 times less powerful than those of ascorbic acid and gallic acid respectively. Furthermore, the phytochemical screening of “Kroatisane” revealed the presence of several secondary metabolites in particular, alkaloids, tannins, flavonoids, terpenoids, saponosides and reducing compounds. These results could partly justify the traditional use of this recipe in traditional medicine for the management of symptoms of COVID-19.

Keywords

Kroatisane, Traditional Recipe, Phytochemical Screening, Antioxidant Activity, Phytocompound

References

  1. Abdollahi M., Karimpour H., Reza Monsef-Esfehani H. (2003). Antinociceptive effects of Teucrium polium L total extract and essential oil in mouse writhing test. Pharmacological Research, 48 (1):31-35
  2. Aimé A. S. (2010). Thèse de Doctorat de Chimie Organique : Contribution à l’étude ethnobotanique, phytochimique et activités biologiques d’une plante médicinale malienne, Guiera senegalensis (Combretaceae). Cotutelle Université de Bamako Université Blaise Pascal de Clermont-Ferrand. PP 184.
  3. Amonkan A., Konan A., Kouakou L., Bouafou G., Bleyere M., Ahui M., Zannou V., Ouattara H., Datte J. & Kati-C. S. (2010). Criblage phytochimique et effets d’un extrait aqueux de feuilles de Ficus exasperata Vahl. 1805 (Moraceae) sur la pression artérielle et l’activité contractile du cœur chez les mammifères. International Journal of Biological and Chemical Sciences 4 (3), 681-691.
  4. Aron P. M. & Kennedy J. A. (2008). Flavan‐3‐ols: Nature, occurrence and biological activity. Molecular nutrition & food research, 52(1), 79-104.
  5. Awoyemi O. K., Ewa E.E., Abdulkarim I.A., Aduloju A.R. (2012). Ethnobotanical assessment of herbal plants in southwestern Nigeria. Academic Research International
  6. 2 (3):50-57
  7. Benoit F., Valentin A., Pelissier Y., Diafouka F., Marion C., Kone-Bamba, D., & Bastide, J. M. (1996). In vitro antimalarial activity of vegetal extracts used in West African traditional medicine. The American journal of tropical medicine and hygiene, 54(1), 67-71.
  8. Bouchet N., Lévesque J. & Pousset J-L. (2000). HPLC isolation, identification and quantification of tannins from Guiera senegalensis. Phytochemistry Analysis., 11 :52-56.
  9. Bruneton J. (1993). Pharmacognosie, Phytochimie, Plantes médicinales 2ème édition, Tec et Doc, Lavoisier, Paris. 915p.
  10. Bruneton J. (1999). Phytochimie-Plantes médicinales-Techniques et documentations, J. Pharmacognosie, 5ème édition, Lavoisier, Paris. 1120p.
  11. Bruneton J. (2009). Pharmacognosie, phytochimie, plantes médicinales (4e éd.). Lavoisier,
  12. Bssaibis F., Gmira N. & Meziane M. (2009). Activité antibactérienne de Dittrichia viscosa (L.) W. Greuter. Rev. Microbiol Ind. San et Environn 3 (1) :44-45.
  13. Choi H. J., Song J. H. & Park K. S. (2009). Inhibitory effects of quercetin 3-rhamnoside on influenza A virus replication. Eur Journal Pharm. Sciences.37(3-4): 329-33.
  14. Dellaoui H. (2021). Contribution à l’étude des effets de la plante médicinale Myrtus communis contre la toxicité du Cadmium chez le rat Wistar. Etudes biochimique et histologique. Université de Saida– Dr. Moulay Tahar Faculté des Sciences, Thèse, Biochimie & Toxicologie Expérimentale, PP 157.
  15. Dohou N. Yamni K., Tahrouch S., Idrissi H., Badoc A. & Gmira N. (2003). Screening phytochimique d’une endémique ibéro- marocaine, Thymelaea lythroides. Bulletin de la Société Pharmaceutique de Bordeaux, 29: 233-239.
  16. Ghedira K. (2005). Les flavonoïdes : structure, propriétés biologiques, rôle prophylactique et emplois en thérapeutique ; Phytothérapie, 4: 162-169
  17. Govindappa M., Naga S. S., Poojashri M. N., Sadananda T.S. & Chandappra C.P. (2011). Antimicrobial, Anti-oxidant and ant-inflammatory activity of ethanol extract, extraits végétaux radioprotecteurs. Food Chem, 2008. 106 (2):868-873.
  18. Guignard J.L., Cossen L. & Henry M. (1985). Abrégé de Phytochimie, Ed. Masson, volume 1, Paris. 224p.
  19. Jiofack T., Fokunang C., Guedje N., Kemeuze V., Fongnzossie E., Nkongmeneck B.A., Mapongmetsem P.M. & Tsabang N. (2010). Ethnobotanical uses of medicinal plants of two ethnoecological regions of Cameroon. Int. Journal Med. Med. Sciences., 2(3):20.
  20. Khoudali S., Benmessaoud D., Essaqui1 A., Zertoubi M., Azzi M. & Benaissa M. (2014). Étude de l’activité antioxydante et de l’action anti corrosion de l’extrait méthanolique des feuilles du palmier nain (Chamaerops humilis L.) du Maroc. Journal of Materials and Environmental Science, 5 (3), 887-898.
  21. Koffi E., Sea T., Dodehe Y. & Soro S. (2010). Effect of solvent type on extraction of polyphenols from twenty-three Ivorian plants. Journal Animal & Plant Sci., 5 : 550.
  22. Kroa E. & Diaby B. (2014). Analyse de la collaboration entre médecines traditionnelle et moderne dans la région du Sud Bandama (Côte d’Ivoire). Revue CAMES- Série Pharm. Med. Trad Af, 17(1), p. 21-27.
  23. Lone S.A. & Ahmad A. (2020). COVID-19 pandemic–an African perspective. Emerging microbes & infections, 9 (1): 1300-1308.
  24. Mbunge E. (2020). Effects of COVID-19 in South African health system and society: An explanatory study. Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 14 (6): 1809-1814.
  25. Narayana K.R., Reddy M.S., Chaluvadi M.R. & Krishina D.R. (2001). Bioflavonoids classification, Pharmacological, biochemical effects and therapeutic potential Indian Journal of Pharmacology, 33:2.
  26. OMS (2002). Stratégie de l’OMS pour la Médecine Traditionnelle pour 2002-2005,
  27. OMS (2003). OMS/médecine traditionnelle.
  28. http://www.who.int/mediacentre/factsheets/2003/fs134/fr
  29. OMS, (2020). Foire aux questions concernant les candidats-vaccins contre la COVID-19 et les mécanismes d’accès, 27 août 2020 (No. OPS/FPL/IM/COVID-19/20-0018). OPS.
  30. OMS, (2020). Rapport de documentation de la riposte COVID 19 en Côte d’Ivoire Janvier Novembre 2020, 66pp.
  31. OMS (2021). Vaccin Oxford/Astra Zeneca contre la COVID-19 : ce qu’il faut savoir. Vaccin Oxford/Astra Zeneca contre la COVID-19 : ce qu’il faut savoir (who.int). Consulté le 22 Mars 2021.
  32. Prieto P., Pineda M. & Aguilar M. (1999). Spectrophotometric quantification of antioxidant capacity through the formation of a phosphomolybdenum complex: specific application of vitamin E. Anal. Biochem. 269: 337-341.
  33. Raoult D., Hsueh P.R., Stefani S. & Rolain J.M. (2020). COVID-19 therapeutic and prevention. Int Journal. Antimicrob Agents, 105937.
  34. Seyoum A., Asres K. & El-Fiky F.K. (2006). Structure-radical scavenging activity relationships of flavonids. Journal of phytochemistry. 67: 2058.
  35. Spedding G., Ratty A. & Middleton E. (1989). Inhibition of reverse transcriptases by flavonoids. Antiviral Res. 1989, 12 (2): 99-110.
  36. Tachema A., Haouatti F., Smail A., Toumi P. & Zitouni H. (2020). Plantes et COVID 19. Le recueil des données. ResearchGate, 40 p.
  37. Turkmen N., Sari F., & Velioglu Y. S. (2005).The effect of cooking methods on total phenolics and antioxidant activity of selected green vegetables. Food chemistry, 93(4).
  38. Wang J. & Mazza G. (2006). Effects of anthocyanins and other Phenolic compounds on the Production of Tumor Necrosis Factor alpha in LPS/IF N-gama Activated RAW 264. 7 Macrophages. Journal Agric. Food Chem, 4183.
  39. Yves-Alain B., Janat A., Mamyrbekova B., Boua B., Fézan H.T. & Ehouan E. (2007). Étude ethnobotanique et screening phytochimique de Caesalpinia benthamiana (Baill.) Herend. et Zarucchi (Caesalpiniaceae). Sciences & Nature, 4(2): 217-225.

Cite this Article:

International Journal of Sciences is Open Access Journal.
This article is licensed under a Creative Commons Attribution 4.0 International (CC BY 4.0) License.
Author(s) retain the copyrights of this article, though, publication rights are with Alkhaer Publications.

Search Articles

Issue June 2024

Volume 13, June 2024


Table of Contents



World-wide Delivery is FREE

Share this Issue with Friends:


Submit your Paper