Artificial Neural Network Approach for Estimation of Land Surface Temperature

Artificial Neural Network Approach for Estimation of Land Surface Temperature

Loading document ...
Loading page ...


Author(s): Maurício Roberto Veronez, Fabiane Bordin, Francisco Manoel Wohnrath Tognoli, Anibal Gusso, Marcelo Kehl de Souza

Download Full PDF Read Complete Article

748 1284 11-21 Volume 2 - Dec 2013


in this article we present an alternative method for extrapolation of Land Surface Temperature (LST) by means of Artificial Neural Networks (ANNs) based on positional variables (UTM coordinates and altitude), temperature and average air relative humidity. The study region was the Rio dos Sinos Hydrographic Basin (RSHB), Rio Grande do Sul, Brazil. For ANN training we used an NOAA-14/AVHRR satellite thermal image, with pixels size 1 x 1 km, with known information of LST on January 29, 2003. Various settings were tested in ANN training step, the one that presented the best performance was composed of only one intermediate layer (with 4 neurons and logistic sigmoid activation function). The trained network was validated with 2 simulations: in the first simulation we extrapolate the LST values of April 11, 2003 and in the second simulation we extrapolate LST values of October 15, 2003. The results of the simulations were compared with Split Window (SW) algorithm and the average discrepancies found between both models were of -0.30° C and 0.26° C, respectively, of April 11, 2003 and October 15, 2003. A strong correlation was found between both models with R2 values exceeding 0.93 and statistically we checked that there was no difference between the LST averages values obtained by ANN and SW for 5% significance level.


Artificial Neural Networks, NOAA Satellite Image, Land Surface Temperature, Split Window


  1. Aires, F., Chédin, A., Scott, N. A., & Rossow, W. B. (2002). A regularized neural net approach for retrieval of atmospheric and surface temperatures with the IASI instrument. Journal of Applied Meteorology, 41, 144–159
  2. Aires, F., Rossow, W. B., Scott, N. A., & Chédin, A. (2002). Remote sensing from the infrared atmospheric sounding interferometer instrument, 2, Simultaneous retrieval of temperature, water vapor, and ozone atmospheric profiles. Journal of Geophysical Research, 107, 4620
  3. Atluri, V.; Hung, C. C.; Coleman, T. L. Artificial Neural Network for Classifyng and Predicting Soil Moisture and Temperature Using Levenberg-Marquardt Algorithm. Alabama, p. 10-13, 1999
  4. Becker, F., Li, Z.-L. Temperature-independent spectral indices in thermal infrared bands. Remote Sensing of Environment, v. 32, n. 1, p. 17–33, 1990
  5. BLACKWELL, W.J., 2005, A neural-network technique for the retrieval of atmospheric temperature and moisture profiles from high spectral resolution sounding data. IEEE Transactions on Geoscience and Remote Sensing, 43, pp. 2535–2546
  6. Braga, A. P., Carvalho, A. P. L. F., & Ludermir, T. B. (2007). Redes neurais artificiais: teorias e aplicações (2nd ed.). Rio de Janeiro: LTC
  7. Brunsell, N. A., & Gillies, R. R. (2003). Length scale analysis of surface energy fluxes derived from remote sensing. Journal of Hydrometeorology, 4, 1212–1219
  8. Coll, C., Caselles, V. A split window algorithm for land surface temperature from advanced very high resolution radiometer data: Validation and algorithm comparison. Journal of Geophysical Research, v. 102, n. 14, p. 16697-16713, 1997
  9. COMBAL, B., BARET, F., WEISS, M., TRUBUIL, A., MACe, D., PRAGNERE, A., MYNENI, R., KNYAZIKHIN, Y. and WANG, L., 2003, Retrieval of canopy biophysical variables from bidirectional reflectance using prior information to solve the ill-posed inverse problem. Remote Sensing of Environment, 84, pp. 1–15
  10. Cooper, D. I., Asrar, G. Evaluating atmospheric correction models for retrieving surface temperatures from the AVHRR over a tallgrass prairie*1. Remote Sensing of Environment, v. 27, n. 1, p. 93–102, 1989
  11. Czajkowski, K.P., Goward, S.N., Ouaidrari, H. Impact of AVHRR filter functions on surface temperature estimation from the split window approach. International Journal of Remote Sensing, v. 19, n. 10, p. 2007–2012, 1998
  12. Czajkowski, K. P.; Sobrino, J. A.; Vermote, E. Land surface temperature estimation from AVHRR thermal infrared measurements: An assessment for the AVHRR Land Pathfinder II data set. Remote Sensing of Environment, v.81, n. 1, p. 114-128, 2002
  13. Dash, P., Gottsche, F.M., Olesen, F.S., Fischer, H. Land surface temperature and emissivity estimation from passive sensor data: theory and practice-current trends. International Journal of Remote Sensing, v. 23, n. 13, p. 2563–2594, 2002
  14. Del Frate, F. Solimini, D. (2004). On neural network algorithms for retrieving forest biomass from SAR data, IEEE Transactions on Geoscience and Remote Sensing, 42 (1),24-34
  15. Dousset, B. & Gourmelon, F., 2003. Satellite multi-sensor data analysis of urban surface temperatures and landcover, ISPRS Journal of Photogrammetry and Remote Sensing. 58, (1-2), 43-54
  16. Esquerdo, J. C. D. M.; Antunes, J. F. G.; Baldwin, D. G.; Emery, W. J.; Zullo Jr, J. An automatic system for AVHRR land surface product generation. International Journal of Remote Sensing, v.27, n.18, p.3925-3942, 2006
  17. Ferreira, N.J. (Coordenador) Aplicações ambientais brasileiras dos satélites NOAA e TIROS-N. São Paulo: Oficina de Textos, 2004
  18. Galvão, C. O.; Valença, M. J. S.; Vieira, V. P. P. B.; Diniz, L. S.; Lacerda, E. G. M.; Carvalho, A. C. P. L. F; Ludermir, T. B. Sistemas inteligentes: Aplicações a recursos hídricos e ciências ambientais. Porto Alegre: UFRGS/ABRH, 1999, 246p
  19. George, R. K. Prediction of soil temperature by using artificial neural networks algorithms. Nonlinear Analysis, v. 47, n. 3, p. 1737-1748, 2001
  20. Gupta, R.K.; Prasad, S.; Sesha-Sai, M.V.R.; Viswanadham, T.S. (1997) The estimation of surface temperature over an agricultural area in the state of Haryana and Panjab, India, and its relationship with the Normalized Difference Vegetation Index (NDVI), using NOAA-AVHRR data. International Journal of Remote Sensing, 18: 3729-3741
  21. Gusso, A.; Fontana, D. C.; Gonçalves, G. A. (2007) Mapeamento da temperatura da superfície terrestre com uso do sensor NOAA/AVHRR. Pesquisa Agropecuária Brasileira. Brasília, 42: 231-237
  22. Haykin, S. Redes Neurais: princípios e prática. Porto Alegre: Editora Bookman, 2001, 900p
  23. Karnieli, A., Agam, N., Pinker, R. T., Anderson, M., Imhoff, M. L., & Gutman, G. G. (2010). Use of NDVI and land surface temperature for drought assessment: Merits and limitations. Journal of Climate, 23, 618–633
  24. Kerr, Y. H., Lagouarde, J. P., & Imbernon, J. (1992). Accurate land surface temperature retrieval from AVHRR data with use of an improved split window algorithm. Remote Sensing of Environment, 41, 197–209
  25. Haykin, S. (1999). Neural networks: a comprehensive foundation (2nd ed.). New Jersey: Prentice-Hall
  26. Kustas, W., & Anderson, M. (2009). Advances in thermal infrared remote sensing for land surface modeling. Agricultural and Forest Meteorology, 149, 2071–2081
  27. Kidwell, K. B. NOAA Polar Orbiter Data Users Guide. NOAA, US Department of commerce, Washington DC, 1998
  28. Kumar, M.; Raghuwanshi, N. S.; Singh, R.; Wallender, W. W.; Pruitt, W. O. Estimating evapotranspiration using artificial neural network. Journal of Irrigation and Drainage Engineering, v. 128, n. 4, p.224-233, 2002
  29. Lambin E.F. and Ehrlich D., 1995. Combining vegetation indices and surface temperature for landcover mapping at broad spatial scales, International Journal of Remote Sensing, 16(3), pp.573-579
  30. Le Maire, G., Fran, C. and Dufrene, E., 2004, Towards universal broad leaf chlorophyll indices using PROSPECT simulated database and hyperspectral reflectance measurements. Remote Sensing of Environment, 89, pp. 1–28
  31. Li, Z.-L., Tang, B-H., Wu, H., Ren, H., Yan, G., Wan, Z., Trigo, I. F., Sobrino, J. A. (2013). Satellite-derived land surface temperature: Current status and perspectives. Remote Sensing of Environment 131, 14–37
  32. Mallick , J., Kant, Y., Bharath, B.D. Estimation of land surface temperature over Delhi using Landsat-7 ETM+, J. Ind. Geophys. Union, 12(3), 131-140
  33. Mao, K; Shi, J. A Neural Network Technique for Separating Land Surface Emissivity and Temperature From ASTER Imagery. IEEE Transactions on Geoscience and Remote Sensing, v. 46, n. 1, p. 200-208, 2008
  34. Mas, J. F., & Flores, J. J. (2008). The application of artificial neural networks to the analysis of remotely sensed data. International Journal of Remote Sensing, 29, 617–663
  35. Moran, M. S.; Clarke, T. R.; Inoue, Y.; Vidal, A. (1994) Estimating crop water deficit using the relation between surface-air temperature and spectral vegetation index. Remote Sensing of Environment, 49: 246– 263
  36. Muller, M.; Fill, H. D. Redes Neurais aplicadas na propagação de vazões. In: Simpósio Brasileiro de Recursos Hídricos, 15, Curitiba. Anais..., Curitiba: ABRH, 2003. Artigos, p. 1-15. CD-ROM, On-line. Disponível em: <>. Acesso em: 11 set. 2008
  37. Muukkonen, P. and Heiskanen, J., 2005, Estimating biomass for boreal forests using ASTER satellite data combined with standwise forest inventory data. Remote Sensing of Environment, 99, pp. 434–447
  38. Ottle, C., Vidal-Madjar, D. Estimation of land surface temperature with NOAA 9 data. Remote Sensing of the Environment, v. 40, n. 1, p. 27–41, 1992
  39. Price, J. C. Land surface temperature measurements from the split window channels of the NOAA 7 advanced very high resolution radiometer. Journal of Geophysical Research, v. 89, n. 5, p. 7231–7237, 1984
  40. Rivas, R. E. Propuesta de un modelo operativo para la estimación de la evapotranspiración. 2004. 140 p. Tesi Doctoral - Universitat de València, València, Spain. 2003
  41. Schmitt, P., Veronez, M. R., Tognoli, F. M. W., Todt, V., Lopes, R. C., Da Silva, C. A. U. (2013). Electrofacies Modelling and Lithological Classification of Coals and Mud-bearing Fine-grained Siliciclastic Rocks Based on Neural Networks. Earth Science Research; V. 2, n.1, n. 1, 193-208
  42. Silva, J. W. F. 2007: Estimativa da temperatura da superfície do solo de uma região semi-árida a partir do IRMSS (banda 4) do CBERS-2. In: Simpósio Brasileiro de Sensoriamento Remoto (SBSR), 13., 2007, Florianópolis. Anais... São José dos Campos: INPE, 2007. Artigos, p. 1159-1166. CD-ROM, On-line. ISBN 978-85-17-00031-7. Disponível em: <>. Acesso em: 07 ago. 2008
  43. Silva, A. N.; Ramos, R.; Souza, L.; Rodrigues, D.; Mendes, J. SIG – Uma plataforma para introdução de técnicas emergentes no planejamento urbano regional e de transportes. São Carlos: Editora da EESC/USP, 2004, 221p
  44. Sobrino, J., Coll, C., Caselles, V. (1991) Atmospheric correction for land surface temperature using NOAA-11 AVHRR channels 4 and 5. Remote Sensing of Environment, v. 38, n. 1, p. 19–34
  45. Sobrino, J. A., Li, Z.-L., Stoll, M. P., & Becker, F. (1994). Improvements in the split-window technique for land surface temperature determination. IEEE Transaction on Geosciences and Remote Sensing, 32, 243–253
  46. Sandholt, L.; Rasmunssen, K.; Andersen, J. (2002) A simple interpretation of the surface temperature/vegetation index space for assessment of surface moisture status. Remote Sensing of Environment, 79: 213-224
  47. Sontag, E. D. (1992). Feedback stabilization using two-hidden-layer nets. IEEE Transactions on Neural Networks, 3, 981–990
  48. Townshend, J. R. G., Justice, C. O., Skole, D., Malingreau, J. P., Cihlar, J., Teillet, P., et al. (1994). The 1 km resolution global data set: needs of the International Geosphere Biosphere Programme. International Journal of Remote Sensing, 15, 3417–3441
  49. Ulivieri, C.; Castronuovo, M. M.; Francioni, R.; Cardilo, A. A split window algorithm for estimating land surface temperature from satellites. Advances in Space Research, v.14, n.3, p.59-65, 1994
  50. Veronez, M. R.; Thum, A. B.; Luz, A. S.; Da Silva, D. R. 2006. Artificial Neural Network applied in the determination of Soil Surface Temperature-SST. In: International Simposium Accuracy Assessment in Natural Resources and Environmental Sciences, (Accuracy 2006), 7., Lisboa-Portugal. Anais... Lisboa, IGP, 2006. Artigos, p. 889-898. Impresso. ISBN 972-886-727-I
  51. Veronez, M. R., De Souza, S. F.; Matsuoka, M. T., Reinhardt, A. O., Da Silva, R. M. (2011), Regional Mapping of the Geoid Using GNSS (GPS) Measurements and an Artificial Neural Network. Remote Sensing, 3, 668-683
  52. Yang, C. C.; Prassher S. O.; Mehuys G. R.; Patni, N. K. Application of artificial neural networks for simulation of soil temperature. Transactions of the ASAE, v. 40, n. 3, p. 649-656, 1997
  53. Wang, N., Tang, B. H., Li, C., & Li, Z.-L. (2010). A generalized neural network for simultaneous retrieval of atmospheric profiles and surface temperature from hyperspectral thermal infrared data. IEEE International Geoscience and Remote Sensing Symposium (pp. 1055–1058). Honolulu, USA: IEEE
  54. Weng, Q., Lu, D. & Schubring, J., 2004. Estimation of land surface temperature-vegetation abundance relationship for urban heat island studies, Remote Sensing of Environment, 89(4), 467-483
  55. Zanetti, S. S.; Sousa, E. F.; De Carvalho, D. F.; Bernardo, S. Estimação da evapotranspiração de referência no Estado do Rio de Janeiro usando redes neurais artificiais. Revista Brasileira de Engenharia Agrícola e Ambiental, v. 12, n.2, p.174-180, 2008
  56. Zhang, R., Tian, J., Su, H., Sun, X., Chen, S., & Xia, J. (2008). Two improvements of an operational two-layer model for terrestrial surface heat flux retrieval. Sensors, 8, 6165–6187
  57. Zhang, y., Pulliainen, J., Koponen, s. and Hallikainen, m., 2002, Application of na empirical neural network to surface water quality estimation in the Gulf of Finland using combined optical data and microwave data. Remote Sensing of Environment, 81, pp. 327–336

Cite this Article:

International Journal of Sciences is Open Access Journal.
This article is licensed under a Creative Commons Attribution 4.0 International (CC BY 4.0) License.
Author(s) retain the copyrights of this article, though, publication rights are with Alkhaer Publications.

Search Articles

Issue April 2021

Volume 10, April 2021

Table of Contents

World-wide Delivery is FREE

Share this Issue with Friends:

Submit your Paper