Structure and Activity of Fe(III)-Reducing Microorganism Occurring in Paddy Fields of Thailand

Structure and Activity of Fe(III)-Reducing Microorganism Occurring in Paddy Fields of Thailand

Loading document ...
Loading page ...


Author(s): Bongoua-Devisme A. J., Aurélie CEBRON, Emile Kouadio YOBOUE, Christian MUSTIN, Jacques BERTHELIN

Download Full PDF Read Complete Article

458 1079 6-17 Volume 3 - Jun 2014


In the saline paddy soils of Thailand, four bacterial consortia (S1, S2, S6, and S8) were isolated in paddy soils and then selected for their abilities and efficiencies to reduced iron oxyhydroxyde (goethite) at different concentration of salt in culture medium. In this study, the effect of salinity on the structure and activities of bacterial consortia involved in iron reduction process were studied at two saline concentrations (0 and 3% NaCl). The results show that the bacterial consortia presented different behaviors in the presence or absence of salt. The bacterial consortia S1 and S2 were not affected by the presence of salt. Bacterial consortium S6 had a higher iron-reducing activity under saline conditions than in a non-saline environment. The iron reducing activity of the bacterial consortium S8 was inhibited by the presence of salt but not fermentation processes. In this rice fields, the presence of diverse halosensitive to slightly halophilic bacterial groups and also of bacteria presenting both fermentative and iron-respiring metabolisms are able to maintain a strong ability in iron-reduction and dissolution under changing saline environmental conditions.


iron-reducing bacteria, Fe(III)-reducers, paddy soil, Thailand, salinity, isolated consortia, bacterial populations


  1. Arnold, R. G., Hoffmann, M. R., Dichristina, T. J. and Picardal, F. W. (1990). Regulation of Dissimilatory Fe(III) Reduction Activity in Shewanella putrefaciens. Applied and Environmental Microbiology, 56(9), 2811-2817
  2. Ahn J.H., Song, J., Kim, M.S., Joa, J.H. and Weon, H.Y. (2012). Characterization of bacterial and Archaeal communities in rice field soils subjected to long-term fertilization practices. Journal of microbiology, 50(5): 754-765
  3. Balch, W. E., and Wolfe, R.S. (1976). New approach to the cultivation of methanogenic bacteria: 2-mercaptoethanesulfonic acid (HS-CoM)-dependent growth of Methanobacterium ruminatium in a pressurized atmosphere. Applied. Environmental. Microbiology, 32: 781–789
  4. Berthelin, J., Ona-Nguema, G., Stemmler, S., Quantin, C., Abdelmoula, M. and Jorand, F. (2006). Bioreduction of ferric species and biogenesis of green rust in soils. Comptes Rendus Geosciences, 59, 1-9
  5. Bongoua-Devisme, A. J., Mustin, C. and Berthelin, J. (2012). Response of Iron Reducing Bacterial (IRB) to Salinity and Organic Matter amendment in Thai Rice Field Soils. Pedosphere, 22 (3), 375-393
  6. Bongoua-Devisme, A.J., Cébron, A., Kassin, K.E., Gballou, Y.R., Mustin, C. and Berthelin, J. (2013). Microbial communities involved in Fe (III) reduction and mobility during soil organic matter (SOM) mineralization in two contrasted paddy soils. Geomicrobiology journal, 30(4): 347-361
  7. Bousserrhine, N., Gasser, U. G., Jeanroy, E. and Berthelin, J. (1999). Bacterial and Chemical Reductive Dissolution of Mn-, Co-, Cr- and Al-Substituted Goethites. Geomicrobiology Journal, 16, 245-258
  8. Casamayor, E.O., Massana, R., Benlloch, S., Øvreås, L., Díez, B., Goddard, V.J., Gasol, J.M., Joint, I., Rodríguez-Valera, F. and Pedrós-Alió, C. (2002). Changes in archaeal, bacterial and eukaryal assemblages along a salinity gradient by comparison of genetic fingerprinting methods in a multipond solar saltern. Environmental Microbiology, 4(6), 338-348
  9. Cébron A., Norini, M-P., Beguiristain, T. and Leyval, C. (2008). Real-time PCR quantification of PAH-ring hydroxylating dioxygenase (PAH-RHDα ) genes from Gram positive and Gram negative bacteria in soil and sediment samples. Journal of Microbiological Methods, 73, 148-159
  10. Cummings, D.E., March, A.W., Bostick, B., Spring, S., Caccavo, F., Fendorf, S. and Rosenzweig, R.F. (2000). Evidence for microbial Fe(III) reduction in anoxic, mining-impacted Lake sediments (Lake Coeur d’Alene, Idaho). Applied and Environmental Microbiology, 66 (1): 154-162
  11. Dobbin, P. S., Carter, J. P., García-Salamanca San Juan, C., von Hobe, M., Powell, A. K. and Richardson, D. J. (1999). Dissimilatory Fe(III) reduction by Clostridium beijerinckii isolated from freshwater sediment using Fe(III) maltol enrichment. FEMS Microbiology Letters, 176(1), 131-138
  12. Ehrlich, H. L. (2002). Geomicrobiology, 4eme Edition. Marcel Dekker Publisher, New York, 800 p
  13. Emmerich, M., Bhansali, A., Lösekann-Behrens, T., Schrôder, C., Kappler, A. and Behrens, S. (2012). Abundance, Distribution, and activity of Fe(II)-Oxidizing and Fe(III)-reducing Microorganisms in hypersaline sediments of lake Kasin, Southern Russia. Applied and Environmental microbiology, 78(12), 4386-4399
  14. FAO (1999). Bases de Références Mondiales (BRM), Rome, 100 p
  15. Francis, C.A., Obraztsova, A. Y. and Tebo, B.M. (2000). Dissimilatory Metal reduction by Facultative Anaerobe Pantoea Agglomerans SP1. Applied and Environmental Microbiology, 66(2), 543-548
  16. Gorlenko, V., Tsapin, A., Namsaraev, Z., Teal, T., Tourova, T., Engler, D., Mielke, R. and Nealson, K. (2004). Anaerobranca californiensis sp. nov., an anaerobic, alkalithermophilic, fermentative bacterium isolated from a hot spring on Mono Lake. International Journal of Systematic Evolutionary Microbiology, 54: 739-743
  17. Grünberger, O., Macaigne, P., Michelot, J.-L., Hartmann, C. and Sukchan, S. (2008). Salt crust development in paddy fields owing to soil evaporation and drainage: Contribution of chloride and deuterium profile analysis. Journal of Hydrology, 348(1-2), 110-123
  18. He, Q.-x., Huang, X.-c. and Chen, Z.-L. (2011). Influence of organic acids, complexing agents and heavy metals on the bioleaching of iron from kaolin using Fe(III)-reducing bacteria. Applied Clay Science, 51(4), 478-483
  19. Hoffmann, T., Schütz, A., Brosius, M., Völker, A., Völker, U. and Bremer, E. (2002). High-salinity-induced Iron Limitation in Bacillus subtilis. Journal of Bacteriology, 184(3), 718-727
  20. Hori, T., Muller, A., Igarashi, Y., Conrad, R. and Friedrich, M.W. (2010). Identification of iron-reducing microorganisms in anoxic rice paddy soil by 13C-acetate probing. Multidisciplinary Journal of Microbial Ecology, 4, 267-278
  21. Islam, M., Singh Chauhan, P., Kim, Y., Kim, M., and Sa, T. (2011). Community level functional diversity and enzyme activities in paddy soils under different long-term fertilizer management practices. Biol. Fert. Soils 47, 599–604
  22. Jiang, H., Dong, H., Yu, B., Liu, X., Li, Y., Ji, S. and Zhang, C. L. (2007). Microbial response to salinity change in Lake Chaka, a hypersaline lake on Tibetan plateau. Environmental Microbiology, 9(10), 2603-2621
  23. Jiangzhou, H.E. and Dong, Q.U. (2008). Dissimilatory Fe(III) reduction characteristics of paddy soil extract cultures treated with glucose or fatty acids. Journal of Environmental Sciences, 20: 1103-1108
  24. Kivistö, A.T. and Karp, M. T. (2010). Halophilic anaerobic fermentative bacteria. Journal of Biotechnology. Article in press.
  25. Lehours, A-C, Batisson, I., Guedon, A., Mailhot, G. and Fonty, G. (2009). Diversity of culturable bacteria, from the anaerobic zone of the Meromictic Lake Pavin, Able to perform Dissimilatory-Iron reduction in Different in vitro conditions. Geomicrobiology Journal, 26, 212- 223
  26. Li, H. J., Peng, J. J., Weber, K. A. and Zhu, Y. G. (2011). Phylogenetic diversity of Fe(III)-reducing microorganisms in rice paddy soil: enrichment cultures with different short-chain fatty acids as electron donors. Journal of Soils Sediments, 11, 1234-1242
  27. Lin, B., Hyacinthe, C., Bonneville, S., Braster, M., Van Cappellen, P. and Röling, W. F. M. (2007). Phylogenetic and physiological diversity of dissimilatory ferric iron reducers in sediments of the polluted Scheldt estuary, Northwest Europe. Environmental Microbiology, 9(8), 1956-1968
  28. Lovley DR (1991). Dissimilatory Fe(III) and Mn(IV) reduction. Microbiology Review, 55:259-287
  29. Lovley, D. R. and Coates, J. D. (2000). Novel forms of anaerobic respiration of environmental relevance. Microbiology journal, 3, 252-256
  30. Lovley, D. R., Holmes, D.E. and Nevin, K.P. (2004). Dissimilatory Fe(III) and Mn(IV) reduction. Advances Microbiology Physiology, 49, 219-286
  31. Lu, J., Nogi, Y. and Takami, H. (2001). Oceanobacillus iheyensis gen. nov., sp. nov., a deep-sea extremely halotolerant and alkaliphilic species isolated from a depth of 1050 m on the Iheya Ridge. FEMS Microbiology Letters, 205(2), 291-297
  32. Lu, W. J., Wang, H. T., Huang, C. Y. and Reichardt, W. (2002). Communities of Iron(III)-redicing Bacteria in Irrigated Tropical Rice Fields. Microbes and Environments, 17(4): 170-178
  33. Lu, W. J., Wang, H. T., Huang, C. Y. and Reichardt, W. (2008). Aromatic compound degradation by iron reducing bacteria isolated from irrigated tropical paddy soils. Journal of Environmental Sciences, 20: 1487- 1493
  34. Markwiese, J.T. and Colberg, P.J.S. (2000). Bacterial reduction of copper-contaminated Ferric oxide: Copper toxicity and the interaction between fermentative and iron reducing bacteria. Archives of Environmental Contamination and Toxicology, 38, 139-146
  35. Munns, R. (2002). Comparative physiology of salt and water stress. Plant, Cell and Environment, 25, 239-250.
  36. Oren, A. (2001). The bioenergetic basis for the decrease of metabolic diversity at increasing salt concentrations: implications for the functioning of salt lake ecosystems. Hydrobiologia, 466: 61-72
  37. Oren, A. (2002). Diversity of halophilic microorganims: environments, phylogeny, physiology and application. Journal of industrial microbiology and biotechnology, 28(1), 56-63
  38. Oren A. (2011). Thermodynamic limits to microbial life at high salt concentrations. Environmental Microbiology, 13:1908 –1923
  39. Pollock, J., Weber, K.A, Lack, J., Achenbach, L.A., Mormile, M.R. and Coates, J.D. (2007). Alkaline iron(III) reduction by a novel alkaliphilic, halotolerant, Bacillus sp. isolated from salt flat sediments of Soap lake. Applied Microbial Biotechnology, 77, 927- 934
  40. Qadir, M., Ghafoor, A. and Murtaza, G., (2000). Amelioration strategies for saline soils: a review. Land Degradation and Development, 11, 501–521
  41. Quillaguamán, J., Delgado, O., Mattiasson, B. and Hatti-Kaul, R. (2006). Poly(β-hydroxybutyrate) production by a moderate halophile, Halomonas boliviensis LC1. Enzyme and Microbial technology, 38, 148-154
  42. Rengasamy, P. (2006). Wold salinization with emphasis on Australia. Journal of experimental botany, 1-7
  43. Roh, Y. Gao, H., Vali, H., Kennedy, D. W., Yang, Z. K., Gao, W., Dohnalkova, A. C., Stapleton, R. D., Moon J.-W., Phelps, T. J., Fredrickson, J. K. and Zhou, J. (2006). Metal Reduction and Iron Biomineralization by a Psychrotolerant Fe(III)-Reducing Bacterium, Shewanella sp. Strain PV-4. Applied and Environmental Microbiology, 72(5), 3236-3244
  44. Sambrook, J. and Russel, D.W. (2001). Molecular Cloning: A Laboratory Manual. 3rd Edition. Cold Spring Harbor Laboratory Press, NewYork
  45. Scala, D.J., Hacherl, E.L., Cowan, R., Young L.Y. and Kosson, D.S. (2006). Characterization of Fe(III)-reducing enrichment cultures and isolation of Fe(III)-reducing bacteria from the Savannah River site, South Carolina. Research in Microbiology, 157, 772-783
  46. Schippers, A. and Jørgensen, B.B. (2001). Oxidation of pyrite and iron sulfide by manganese dioxide in marine sediments. Geochimica et Cosmochimica Acta, 65(6): 915-922
  47. Schwertmann, U. and Cornell, R. M. (2000). Iron Oxides in laboratory. Preparation and Characterization. 2nd Ed. WILEY- VCH, Weinheim, 188 p
  48. Slobodkin, A. I., Jeanthon, C., L’Haridon, S., Nazina, T., Miroshnichenko, M. and Bonch-Osmolovskaya, E. (1999). Dissimilatory reduction of Fe(III) by thermophilic bacteria and Archaea in deep subsurface petroleum reservoirs of Western Siberia. Current microbiology, 39: 99-102
  49. Sorokin, DY., Rusanov, I.I., Pimenov, N.V., Tourova, T.P.,Abbas, B. and Muyzer, G. (2010). Sulfidogenesis under extremely haloalkaline conditions in soda lakes of Kulunda Steppe (Altai, Russia). FEMS Microbiology Ecology, 73(2): 278-290
  50. Stemmler, S. & Berthelin, J. (2003). Microbial activity as a major factor in the mobilization of iron in the humid tropics. European Journal of Soil Science, 54 (4), 725-733
  51. Stapleton, R. D., Jr Sabree, Z. L., Palumbo, A. V., Moyer, C. L., Devol, A. H., Roh, Y. and Zhou, J. Z. (2005). Metal reduction at cold temperatures by Shewanella isolates from various marine environments. Aquat. Microb. Ecol. 38: 81-91
  52. Swan B.K., Ehrhardt, C.J., Reifel, K.M., Moreno, L.I. and Valentine, D.L. (2010). Archaeal and bacterial communities respond differently to environmental gradients in anoxic sediments of a California hypersaline lake, the Salton Sea. Applied and Environmental Microbiology, 76:757–768
  53. Valencia-Cantero, E., Hermandez-Calderon, E., Velasquez-Becerra, C., Lopez-Meza, J. E., Alfaro-Cuevas, R. and Lopez-Bucio, J. (2007). Role of dissimilatory fermentative iron-reducing bacteria in Fe uptake by common bean (Phaseolus vulgaris L.) plants grow in alkaline soil. Plant Soil, 291, 263-273
  54. Ventosa A., Nieto J. and Oren, A. (1998). Biology of moderately halophilic aerobic bacteria. Microbiology Molecular Biology Review, 62, 504-544
  55. Wang, X.J., Jang, J., Chen, X.P., Sun, G.X. and Zhu, Y.G. (2009). Phylogenetic diversity of dissimilatory ferric iron reducers in paddy soil of Hunan, South China. Journal Soils Sediments, 9, 568-577
  56. Wang, G., Watanabe, T., Jin, J., Liu, X., Kimura, M., and Asakawa, S. (2010). Methanogenic archaeal communities in paddy field soils in north-east China as evaluated by PCR-DGGE, sequencing and real-time PCR analyses. Soil Sci. Plant Nutr. 56, 831–838
  57. Wichern, J., Wichern, F. and Joergensen, R. G. (2006). Impact of salinity on soil microbial communities and the decomposition of maize in acidic soils. Geoderma, 137, 100-108
  58. Williams, W.D. (2002). Environmental threats to salt lakes and the likely status of inland saline ecosystems in 2025. Environ. Conserv. 29:154 –167
  59. Williamson, A.J., Morris, K., Shaw, S., Byrne, J.M., Boothman, C. and Lloyd, J.R. (2013). Microbial reduction of Fe(III) under alkaline conditions relevant to geological disposal. Applied Environmental Microbiology, 79(11):3320-3326
  60. Xiao, X., Wang, P., Zeng, X., Bartlett, D.H., and Wang, F. (2007). Shewanella psychrophila sp. Nov. and Shewanella piezotolerans sp. nov., isolated west Pacific deep-sea sediment. International Journal of systematic and Evolutionary Microbiology, 57, 60-65
  61. Ye, Q., Roh, Y., Carroll, S. L., Blair, B., Zhou, J., Zhang, C. L. and Fields, M. W. (2004). Alkaline anaerobic respiration: isolation and characterization of a novel alkaliphilic and metal-reducing bacterium. Applied and Environmental Microbiology, 70(9), 5595-5602
  62. Youssef, N.H., Ashlock-Savage, K.N. and Elshahed, M.S. (2012). Phylogenetic diversities and community structure of members of the extremely halophilic Archaea (order Halobacteriales) in multiple saline sediment habitats. Applied and Environmental Microbiology, 78:1332–1344

Cite this Article:

International Journal of Sciences is Open Access Journal.
This article is licensed under a Creative Commons Attribution 4.0 International (CC BY 4.0) License.
Author(s) retain the copyrights of this article, though, publication rights are with Alkhaer Publications.

Search Articles

Issue June 2023

Volume 12, June 2023

Table of Contents

World-wide Delivery is FREE

Share this Issue with Friends:

Submit your Paper