Periodic Distortions In Nematics Caused By Flexoelectricity And Saddle-Splay Elasticity

Periodic Distortions In Nematics Caused By Flexoelectricity And Saddle-Splay Elasticity

Loading document ...
Page
of
Loading page ...

Author(s)

Author(s): Amelia Carolina Sparavigna

Download Full PDF Read Complete Article

DOI: 10.18483/ijSci.610 419 1096 1-7 Volume 4 - Jan 2015

Abstract

In liquid crystal materials, the coupling between their elastic field and an external action, such as electric and magnetic fields or the confinement created by free surfaces or cell walls, can give rise to periodic domains. Here, some simple calculations are proposed for nematics in planar cells, where undulations are caused by flexoelectricity and saddle-splay elasticity.

Keywords

Liquid Crystals, Nematics, Flexoelectricity, Saddle-Splay Elasticity

References

  1. L.D. Landau and E.M. Lifshitz, Statistical physics, Pergamon Press, Oxford, UK, 1980
  2. P. Oswald and P. Pieranski, Nematic and cholesteric liquid crystals: Concepts and physical properties illustrated by experiments, Taylor & Francis, 2005
  3. S.A. Pikin, Structural transformations in liquid crystals, Gordon & Breach Science Publishers Ltd., 1991
  4. A. Sparavigna, O.D. Lavrentovich and A. Strigazzi, Periodic stripe domains and hybrid-alignment regime in nematic liquid crystals: Threshold analysis. Phys. Rev. E 1994, 49, 1344-1352
  5. A. Sparavigna, L. Komitov, O. Lavrentovich and A. Strigazzi, Saddle-splay and periodic instability in a hybrid aligned nematic layer subjected to a normal magnetic field. Journal de Physique II, EDP Sciences 1992, 2 (10), 1881-1888
  6. L.K. Vistin, Electrostructural effect and optical properties of a certain class of liquid crystals and their binary mixtures, Sov. Phys. Crystallogr. 1970, 15(3) 514-515
  7. Y.P. Bobylev, V.G. Chigrinov and S.A. Pikin, Threshold flexoelectric effect in nematic liquid crystals, Journal de Physique Colloques 1979, 40(C3), 331-333
  8. O.D. Lavreontovich and V.M. Pergamenshchik, Periodic domain-structures in thin hybrid nematic layers, Mol. Cryst. Liquid Cryst. 1990, 179, 125-132
  9. L.D. Landau and E.M. Lifsits, Fisica Teorica 8 - Elettrodinamica dei mezzi continui, Editori Riuniti, Roma, 1986
  10. P.G. De Gennes and J. Prost, The Physics of Liquid Crystals, Oxford Science Publication, 1995
  11. A.C. Sparavigna, Distortional Lifshitz vectors and helicity in nematic free energy density, International Journal of Sciences, 2013, 2(7), 54-59
  12. A. Sparavigna, Role of Lifshitz invariants in liquid crystals, Materials 2009, 2, 674-698
  13. R.B. Meyer, Piezoelectric effects in liquid crystals. Phys. Rev. Lett. 1969, 22, 918-921
  14. D.L.G. Cheung, Structures and properties of liquid crystals and related molecules from computer simulation, Ph. D. Thesis, University of Durham, Durham, UK, 2002
  15. D. Schmidt, M. Schadt and W.Z. Helfrich, Liquid-crystalline curvature electricity: The bending mode of MBBA. Z. Naturforschung, 1972, 27a, 277-280
  16. S. Warrier and N.V. Madhusudana, An AC electrooptic technique for measuring the flexoelectric coefficient and anchoring energies of nematics, J. Phys. II 1997, 7, 1789-1803
  17. J. Harden, B. Mbanga, N. Ėber, K. Fodor-Csorba, S. Sprunt, J.T. Gleeson and A. Jákli, Giant flexoelectricity of bent-core nematic liquid crystals, Phys. Rev. Lett. 2006, 97, 157802-1-157802-4
  18. W.Z. Helfrich, Elastic properties of lipid bilayers: theory and possible experiments, Z. Naturforschung, 1973, 28c, 693-703

Cite this Article:

  • BibTex
  • RIS
  • APA
  • Harvard
  • IEEE
  • MLA
  • Vancouver
  • Chicago

International Journal of Sciences is Open Access Journal.
This article is licensed under a Creative Commons Attribution 4.0 International (CC BY 4.0) License.
Author(s) retain the copyrights of this article, though, publication rights are with Alkhaer Publications.

Search Articles

Issue June 2019

Volume 8, June 2019


Table of Contents


Order Print Copy

World-wide Delivery is FREE

Share this Issue with Friends:


Submit your Paper