Use of Kinnow Peel as a Source of Biofuels and Carbon Nano Fibers

Use of Kinnow Peel as a Source of Biofuels and Carbon Nano Fibers

Loading document ...
Page
of
Loading page ...

Author(s)

Author(s): Tariq Mahmood, Syed Tajammul Hussain

Download Full PDF Read Complete Article

493 1098 25-33 Volume 2 - Sep 2013

Abstract

Only alternative and cheap source of energy which can be made easily be available to the world is bioenergy. Our experiment included the conversion of Kinnow/Orange peel into biofuels. In the first step Kinnow peel was gasified by using Cobalt oxide nano catalyst at 300, 400°C and at atmospheric pressure. Catalytic gasification yielded 60% liquid extract, 28% fuel gases, 1-5% tar and 10-12% charcoal. Gaseous products contain 3.80-53.03% ethene, 13.15-29.51% methanol, 1.28-1.77% propyne, 6.32-28.67% propane and 3.89-4.59% methane. In second step liquid extract of Kinnow peel obtained from gasification, on etherification gave ethyl ester (biodiesel). This study reports an interesting finding that Kinnow peel as could be used for not only the production of biodiesel, biomethanol, hydrocarbon fuel gases and Char as a source of carbon nano fibers. The world today is producing several million tons of Kinnow peel. The XRD spectrum of char or ash shows the formation of carbon fibers. The technology could be utilized to produce alternate energy.

Keywords

kinnow (orange), catalytic gasification, Co oxide nano particles, biofuel, nanotechnology

References

  1. H. de Lasa, E. Salaices, J. Mazumder, R. Lucky, Catalytic steam gasification of biomass: Thermodynamics and Kinetics, Chem. Rev., 111(2011) 5404-5433
  2. R.M. Navarro, M.C. Sanchez-Sanchez , M.C. Alvarez-Galvan, F.D. Valle, J.L.G. Ferro, Hydrogen production from renewable sources: biomass and photo catalytic opportunities, Ener. Environ. Sci., 2(2009) 35-54
  3. L. Aye, D. Yamaguchi, Supercritical water gasification of Sewage Sludge. Proceedings (526) Energy and Power System, (2006)
  4. (http://www.actapress.com/PaperInfo.aspx?paperId=23594)
  5. I.K. Basily, A.L. Shafik, A.A. Sarban, M.B. Mohamed, Nanotechnology role for thr production of clean fuel E-85 and petrochemical raw materials, J. Nanotechnol., (2012) 1-5
  6. M. He, Z. Hu, J. Li, X. Guo, S. Luo, F. Yang, Y. Feng, G. Yang, S. Liu, Hydrogen-rich gas from catalytic steam gasification of municipal solid waste (MSW): Influence of catalyst and temperature on yield and product composition. Int. J. Hydrogen Ener., 34-1(2008) 195-203
  7. M. Kidwai, V. Bansal, A. Saxena, R. Shankarb, S. Mozumdar, Ni nano particles: an efficient green catalyst for chemoselective reduction of aldehydes. Tetrahedron Lett., 47(2006) 4161–4165
  8. T. Mahmood, S.T. Hussain, (2010), Nanobiotechnology for the production of biofuels from spent tea, Afri. J. Biotechnol., 9(2010) 858-868
  9. W. Yang, H. Gao, H. Xiang, D. Yin, Y. Yang, J. Yang, Y. Xu, Y. Li, Cobalt supported mesoporous silica catalyst for Fischer–Tropsch synthesis. Acta Chim. Sinica 59(2001) 1870-1877
  10. V. Kesavan, D. Dhar, Y. Koltypin, N. Perkas, O. Palchik, A. Gedanken, S. Chandrasekaran, Nano-structured amorphous metals, alloys, and metal oxides as new catalysts for oxidation, Pure Appl. Chem., 73(2001) 85–91
  11. S. Son, S. Lee, Y. Chung, S. Kim, T. Hyeon, The first intramolecular Pauson–Khand reaction in water using aqueous colloidal cobalt nano particles as catalysts, Organ. Lett., 4(2002) 277–279
  12. F. Li, Q. Liu, W. Cai, X. Shao, Analysis of scopoletin and caffeic Acid in Tobacco by GC-MS After a Rapid Derivatization Procedure. Chromatographia, 69-7(2009) 743-748
  13. H. Tsukatani, K. Tobi shi, T. Imasaka, Simple and Sensitive Determination of 2, 4-Xylenol in Surface Water Samples from River and Sea by Gas Chromatography-Mass Spectrometry. Bull. Environ. Contamin. Toxicol., 82(2009) 153–157
  14. J. Warden, L. Pereira, J. Cliff, A. Evans, GC analysis of biodiesel using a high temperature carborane modified siloxane phase column. Thermo fisher Scientific Runcorn Cheshire UK, Sundance renewable Amman ford Swansea UK. 2009
  15. M.S. Niasari, F. Davar, M. Mazaheri, M. Shaterian, Preparation of cobalt nanoparticles from [bis (salicylidene) cobalt (II)]-oleylamine complex by thermal decomposition, J. Magnetism Magnet. Mater., 320(2007) 575-578
  16. M. Guru, B.D. Artukoglu, A. Keskin, A. Koca, Biodiesel production from waste animal fat and improvement of its characteristics by synthesized nickel and magnesium additive. Energ. Convers. Manage., 50-3(2008) 498-502
  17. Y. Lin, P. Munroe, S. Joseph, S. Kimber, L.V. Zwieten, Nanoscale organo-mineral reactions of biochars in ferrosol: an investigation using microscopy, Plant and Soil, 357(2012) 369-380
  18. T. Mahmood, S.T. Hussain, S.A. Malik, New nanomaterial and the process for the production of biofuel from metal hyper accumulator water hyacinth, Afri. J Biotechnol. 9(2010) 2381-2391
  19. T. Mahmood, Metallic Phytoremediation and Nanobiotechnology of water hyacinth, PhD Thesis, Department of Biochemistry, Quid-i-Azam University Islamabad Pakistan 2011
  20. S.T. Hussain, S.A. Ali, A. Bano, T. Mahmood, Use of nanotechnology for the production of biofuels from butchery waste, Int. J. Phy. Sci, 6(2011) 7271-7279
  21. P. Quaak, H. Knoef, H. Stassen, Gasification systems, Energy from biomass- a review of combustion and gasification, World Bank Technical Paper No. 422, March 1999 energy series, Published by The World Bank, Washington D.C. 20433 U.S.A., (1999) 26-2
  22. K.R. Reddy, J.C. Tucker, Productivity and nutrient uptake of water hyacinth Eichhornia crassipes. 1. Effect of nitrogenous source. Eco. Bot. 37(1983) 237-247
  23. A. Nag, Cracking of lipids for fuels and chemicals, Biofuels refining and Performance, publisher The Mc-Graw Hill Co., Inc. New York, U.S.A., (2008) 34-35, 221-247
  24. T. Davidian, N. Guihaume, E. Iojoiu, H. Provendier, C. Mirodatos, Hydrogen production from crude pyrolysis oil by a sequential catalytic process, Appl. Catal. B: Environmental, 73(2006) 116-127
  25. T. Kimura, T. Miyazawa, J. Nishikawa, S. Kado, K. Okumura, T. Miyao, S. Naito, K. Kunimori, K. Tomishige, Development of Ni catalysts for tar removal by stream gasification of biomass, Appl. Catal. B: Environmental, 68(2006) 160-170
  26. K. Svoboda, A. Siewiorek, D. Baxter, J. Rogut, M. Pohorely, Thermodynamic possibilities and constraints for pure hydrogen production by a nickel and cobalt-based chemical looping process at lower temperatures, Enegy Conser. Manage., 49(2007) 221-231
  27. D. Swierczynski, S. Libs, C. Courson, A. Kiennemann, Steam reforming of tar from a biomass gasification process over Ni/olivine catalyst using toluene as a model compound, Appl. Catal. B: Environmental, 74(2007) 211-222
  28. G. Bran, T. Mochizuki, N. Fujishita, H. Nomoto, M. Yamada, Activation and catalytic behaviour of several Co/SiO2 catalysts for Fischer-Tropsch synthesis, Ener. Fuel, 17(2003) 799-803
  29. F.R.V. Voort, A. Ghetler, D.I. Garcia-Gonzelez, Y.D. Li, Perspectives on quantitative Mid-FTIR spectroscopy in relation to edible oil and lubricant analysis : Evolution and integration of analytical methodologies, Food Anal. Meth., 1(2008) 153-163
  30. S.M. Lima, T. Izida, M.S. Figuciredo, L.H.C. Aandrade, P.V. Del-Re, N. Jorge, E. Buba, F. Aristone, Analysis of biodiesel and frying vegetable oils by means of FTIR photo acoustic spectroscopy, Eur. Phys., J. Special Topics, 153(2008) 535-537
  31. S. Manafi, M.R. Rahimipour, I. Mobasherpour, A. Soltanmoradi, The Synthesis of Peculiar Structure of Spring like Multi wall Carbon Nanofibers/Nanotubes via Mechanothermal Method, J. Nanomater. Volume 2012 (2012), Article ID 803546, 8 pages doi:10.1155/2012/803546
  32. S. Yang, X. Chen, T. Katsuno, S. Motojima, Controllable synthesis of carbon microcoils/nanocoils by catalysts supported on ceramics using catalyzed chemical vapor deposition process, Mater. Res. Bull., 42(2007) 465-473
  33. Y. Du, J. Wang, C. Cui, X. Liu, X. Wang, X. Han, Pure carbon microwave absorbers from anion-exchange resin pyrolysis, Synthetic Metals, 160(2010) 2191–2196
  34. http://www.pakissan.com/english/allabout/orchards/citrus/index.shtml

Cite this Article:

  • BibTex
  • RIS
  • APA
  • Harvard
  • IEEE
  • MLA
  • Vancouver
  • Chicago

International Journal of Sciences is Open Access Journal.
This article is licensed under a Creative Commons Attribution 4.0 International (CC BY 4.0) License.
Author(s) retain the copyrights of this article, though, publication rights are with Alkhaer Publications.

Search Articles

Issue October 2019

Volume 8, October 2019


Table of Contents


Order Print Copy

World-wide Delivery is FREE

Share this Issue with Friends:


Submit your Paper