Download Full PDF
Read Complete Article
DOI: 10.18483/ijSci.2673
~ 25
` 104
a 47-50
Volume 12 - Mar 2023
Abstract
In this article we will discuss the Egelstaff-Schofield line shapes, as used in Raman spectroscopy, and their fit by means of q-Gaussian Tsallis functions. q-Gaussians are probability distributions having their origin in the framework of Tsallis statistics. A continuous real parameter q is characterizing them so that, in the range 1 < q < 3, q-functions pass from the usual Gaussian form, for q close to 1, to that of a heavy tailed distribution, at q close to 3. The value q=2 corresponds to the Cauchy-Lorentzian distribution. This behavior allows the q-Gaussian function to properly mimicking the Egelstaff-Schofield line shape, which has been introduced to fit the bands of first-order Raman scattering in ionic liquids. This line shape is based on a modified Bessel function of the second kind. Moreover, since the Fourier transform of the Egelstaff-Schofield line shape is given by a simple analytical expression, we can use this expression as an easy substitute for the Fourier transform of the q-Gaussian function.
Keywords
q-Gaussian distribution, Gaussian distribution, Cauchy distribution, Lorentzian distribution, Voigt distribution, Egelstaff-Schofield line-shape, Raman spectroscopy, EPR spectroscopy
References
- Bunten, R. A. J., McGreevy, R. L., Mitchell, E. W. J., Raptis, C., & Walker, P. J. (1984). Collective modes in molten alkaline-earth chlorides. I. Light scattering. Journal of Physics C: Solid State Physics, 17(26), 4705.
- Burshtein, A. I., & Temkin, S. I. (1994). Spectroscopy of molecular rotation in gases and liquids. Cambridge University Press, Cambridge.
- Burshtein, A. I., Fedorenko, S. G., & Pusep, A. Yu. (1983). The lineshape of motion-averaged isotropic Raman spectra. Chem. Phys. Lett. 100, 155-158.
- Egelstaff, P. A., & Schofield, P. (1962). On the evaluation of the thermal neutron scattering law. Nuclear Science and Engineering, 12(2), 260-270.
- Fedorenko, S.G., Pusep, A.Yu., & Burshtein, A.I. (1987). The transformation of inhomogeneously broadened spectra due to frequency migration, Spectrochim. Acta A 43, 483-488.
- Ferrari, A. C., & Robertson, J. (2000). Interpretation of Raman spectra of disordered and amorphous carbon. Physical review B, 61(20), 14095.
- Ferrari, A. C., & Robertson, J. (Eds.) (2004). Raman spectroscopy in carbons: From nanotubes to diamond”. Philos. Trans. R. Soc. Ser. A 362, 2267.
- Ferrari, A. C. (2007). Raman spectroscopy of graphene and graphite: Disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid state communications, 143(1-2), 47-57.
- Hanel, R., Thurner, S., & Tsallis, C. (2009). Limit distributions of scale-invariant probabilistic models of correlated random variables with the q-Gaussian as an explicit example. The European Physical Journal B, 72(2), 263.
- Howarth, D. F., Weil, J. A., & Zimpel, Z. (2003). Generalization of the lineshape useful in magnetic resonance spectroscopy. Journal of Magnetic Resonance, 161(2), 215-221.
- Keresztury, G., & Földes, E. (1990). On the Raman spectroscopic determination of phase distribution in polyethylene. Polymer testing, 9(5), 329-339.
- Kirillov, S. (2004). Novel approaches in spectroscopy of interparticle interactions. Vibrational line profiles and anomalous non-coincidence effects. In Novel Approaches to the Structure and Dynamics of Liquids: Experiments, Theories and Simulations; Springer: Berlin/Heidelberg, Germany, 2004; pp. 193–227
- Kirillov, S. A. (1999). Time-correlation functions from band-shape fits without Fourier transform. Chemical physics letters, 303(1-2), 37-42.
- Kirillov, S. A. (1993). Markovian frequency modulation in liquids. Analytical description and comparison with the stretched exponential approach. Chemical physics letters, 202(6), 459-463.
- Kubo, R., & Tomita, K. (1954). A general theory of magnetic resonance absorption. Journal of the Physical Society of Japan, 9(6), 888-919.
- Meier, R. J. (2005). On art and science in curve-fitting vibrational spectra. Vibrational spectroscopy, 2(39), 266-269.
- Naylor, C. C., Meier, R. J., Kip, B. J., Williams, K. P., Mason, S. M., Conroy, N., & Gerrard, D. L. (1995). Raman spectroscopy employed for the determination of the intermediate phase in polyethylene. Macromolecules, 28(8), 2969-2978.
- Naudts, J. (2009). The q-exponential family in statistical physics. Central European Journal of Physics, 7, 405-413.
- Rodrigues, P. S. S., & Giraldi, G. A. (2016). Fourier analysis and q-gaussian functions: Analytical and numerical results. arXiv preprint arXiv:1605.00452.
- Rothschild, W. G., Perrot, M., & Guillaume, F. (1986). Vibrational dephasing under fractional (“stretched”) exponential modulation. Chemical Physics Letters, 128(5-6), 591-594.
- Rotschild, W. G., Cavagnat, R. M., & Perrot, M. (1987). Vibrational dephasing under fractional (“stretched”) exponential modulation in a liquid crystal system. Chemical Physics, 118(1), 33-43.
- Sparavigna, A. C. (2021). Nozioni di q-calcolo nell'ambito del quantum calculus. Zenodo. https://doi.org/10.5281/zenodo.4982846
- Sparavigna, A. C. (2022). Entropies and Logarithms. Zenodo. DOI 10.5281/zenodo.7007520
- Sparavigna, A. C. (2023). q-Gaussian Tsallis Line Shapes and Raman Spectral Bands, International Journal of Sciences, 12(3), 27-40 DOI: 10.18483/ijSci.2671
- Svelto, O. (1998). Principles of Lasers, fourth ed., Plenum Press, New York, 1998, pp. 31–50.
- Tsallis, C. (1988). Possible generalization of Boltzmann-Gibbs statistics. Journal of statistical physics, 52, 479-487.
- Tsallis, C., Levy, S. V., Souza, A. M., & Maynard, R. (1995). Statistical-mechanical foundation of the ubiquity of Lévy distributions in nature. Physical Review Letters, 75(20), 3589.
- Umarov, S.,Tsallis, C., Steinberg, S. (2008). On a q-Central Limit Theorem Consistent with Nonextensive Statistical Mechanics. Milan J. Math. Birkhauser Verlag. 76: 307–328. doi:10.1007/s00032-008-0087-y. S2CID 55967725.
Cite this Article:
International Journal of Sciences is Open Access Journal.
This article is licensed under a Creative Commons Attribution 4.0 International (CC BY 4.0) License.
Author(s) retain the copyrights of this article, though, publication rights are with Alkhaer Publications.