Some Notes on Boltzmann and Landauer Phonon Thermal Transport at Nanoscale

Some Notes on Boltzmann and Landauer Phonon Thermal Transport at Nanoscale

Loading document ...
Loading page ...


Author(s): Amelia Carolina Sparavigna

Download Full PDF Read Complete Article

DOI: 10.18483/ijSci.604 372 1023 24-27 Volume 3 - Dec 2014


To evaluate the phonon thermal transport at the nanoscale of nanotubes and nanowires we can use Boltzmann and Landauer approaches. The Boltzmann equation is coming from a semiclassical formulation, whereas the Landauer equation is based on ballistic models. Here we show, for teaching purposes, a simple manner of linking these two approaches using dimensional equations.


Nanotubes, Nanowires, Nanostructures, Phonons, Thermal Transport, Relaxation Time Approximation, Boltzmann Equation, Landauer Formula


  1. Yi, W., Lu, L., Dian-lin, Z., Pan, Z.W., and Xie, S.S. (1999). Linear specific heat of carbon nanotubes, Phys. Rev. B 59, R9015-R9018
  2. Hone, J., Whitney, M., Piskoti, C., and Zettl, A. (1999). Thermal conductivity of single-walled carbon nanotubes, Phys. Rev. B 59, R2514-R2516
  3. Kim, P., Shi, L., Majumdar, A., and McEuen, P.L. (2001). Thermal transport measurements of individual multiwalled nanotubes, Phys. Rev. Lett. 87, 215502 (5 pages)
  4. Li, D., Wu, Y., Kim, P., Shi, L., Yang, P., and Majudar, A. (2003). Thermal conductivity of individual silicon nanowires, Appl. Phys. Lett. 83, 2934-2936
  5. Dresselhaus, M.S., Dresselhaus, G., and Eklund, P.C. (1996). Science of fullerenes and carbon nanotubes, Academic Press, New York
  6. Behabtu, N., Young, C.C., Tsentalovich, D.E., Kleinerman, O., Xuan Wang, X., Ma, A.W.K., Amram Bengio, E., ter Waarbeek, R.F., de Jong, J.J., Hoogerwerf, R.F., Fairchild, S.B., Ferguson, J.B., Maruyama, B., Kono, J., Talmon, Y., Cohen, Y., Otto, M.J., and Pasquali, M. (2013). Strong, light, multifunctional fibers of carbon nanotubes with ultrahigh conductivity, Science 339 (6116), 182-186
  7. Salaway, R.N., and Zhigilei, L.V. (2014). Molecular dynamics simulations of thermal conductivity of carbon nanotubes: Resolving the effects of computational parameters, International Journal of Heat and Mass Transfer 70, 954-964
  8. De Volder, M. F., Tawfick, S. H., Baughman, R. H., and Hart, A. J. (2013). Carbon nanotubes: present and future commercial applications, Science 339 (6119), 535-539
  9. Ouyang, T., Chen, Y., Liu, L.-M., Xie, Y., Wei, X., and Zhong, J. (2012). Thermal transport in graphyne nanoribbons, Phys. Rev. B 85, 235436 (7 pages)
  10. Zhong, W.-R., Zheng, D.-Q., and Hu, B. (2012). Thermal control in graphene nanoribbons: thermal valve, thermal switch and thermal amplifier, Nanoscale 4, 5217-5220
  11. Sparavigna, A., and Ravetti A. (2005). Thermal conductivity in nanotubes and nanotube bundles, Recent Res. Devel. Physics 6, 173-184, S.G. Pandalai Ed., ISBN 81-7895-171-1
  12. Sparavigna, A. (2008). Lattice specific heat of carbon nanotubes, Journal of Thermal Analysis and Calorimetry 93, 983-986
  13. Ziman, J.M. (1960). Electrons and phonons: the theory of transport phenomena in solids, Clarendon, Oxford
  14. Srivastava, G.P. (1990). The physics of phonons, Hilger, Bristol
  15. Sparavigna, A. (2002). Influence of isotope scattering on the thermal conductivity of diamond, Phys. Rev. B 65, 064305 (5 pages)
  16. Omini, M., and Sparavigna, A. (1997). Heat transport in dielectric solids with diamond structure, Nuovo Cim. D 19, 1537-1563
  17. Omini, M., and Sparavigna, A. (1997). Beyond the isotropic-model approximation in the theory of thermal conductivity, Phys. Rev. B 53, 9064-9073
  18. Sparavigna, A.C., and Galli, S. (2012). L'equazione di Boltzmann per la conducibilità termica fononica nell'approssimazione dei tempi di rilassamento, Lulu Enterprises, Raleigh, NC
  19. Mahan, G.D., and Gun Sang Jeon, (2004). Flexure modes in carbon nanotubes, Phys. Rev. B, 70, 075405 (11pages)
  20. Sparavigna, A. (2006). Lattice specific heat of carbon nanotubes, arXiv:cond-mat/0609139 [cond-mat.mtrl-sci]
  21. Imry, J. (1997). Introduction to Mesoscopic Physics, Oxford University Press
  22. Datta, A. (1995). Electronic transport in mesoscopic systems, Cambridge University Press
  23. Rego, L.G.C., and Kirczenow, G. (1998). Quantized thermal conductance of dielectric quantum wires, Phys. Rev. Lett. 81, 232-235

Cite this Article:

International Journal of Sciences is Open Access Journal.
This article is licensed under a Creative Commons Attribution 4.0 International (CC BY 4.0) License.
Author(s) retain the copyrights of this article, though, publication rights are with Alkhaer Publications.

Search Articles

Issue April 2021

Volume 10, April 2021

Table of Contents

World-wide Delivery is FREE

Share this Issue with Friends:

Submit your Paper