Classification, Maturity, Provenance, Tectonic Setting and Source-Area Weathering of the Ilubirin Stream Sediments, South West, Nigeria

Classification, Maturity, Provenance, Tectonic Setting and Source-Area Weathering of the Ilubirin Stream Sediments, South West, Nigeria

Loading document ...
Loading page ...


Author(s): Henry Y. Madukwe, Romanus A. Obasi

Download Full PDF Read Complete Article

DOI: 10.18483/ijSci.661 528 1739 7-21 Volume 4 - Apr 2015


Geochemical study on the Ilubirin stream sediments was carried out to infer their provenance, maturity, classification, enrichment, depletion, tectonic setting and source-area weathering. The sediments can be classified as ferromagnesian potassic, quartz arenites that are non-calcareous. The SiO2/Al2O3 index is high, meaning that the samples are mature, the Index of Compositional Variability also indicate that the sediments are mineralogically mature, while the Al2O3/(CaO+MgO+Na2O+K2O) ratio indicate that there are stable mobile oxides in the sediments. The plot of SiO2 versus Al2O3+ K2O+ Na2O shows that the sediments formed under semi-arid/arid conditions tending towards increasing chemical maturity. Al2O3 correlates positively with all the major oxides except SiO2, suggesting hydraulic fractionation and sorting. The negative linear trend between Al2O3 and SiO2 indicates that the major element composition of the stream sediments is controlled largely by the relative amount of quartz and feldspar versus clay minerals. The depletion of highly mobile Na. K and Ca elements is due to leaching during the formation of clay minerals during increased chemical weathering. The immobile Fe and the less mobile Mg elements were depleted while the immobile Ti was enriched; this suggest that they may are from a felsic source. The high TiO2/Fe2O3 ratios suggests concentration in the sediments of a heavy mineral phase containing Ti minerals such as ilmenite and rutile. The weathering indices (CIA, CIW, PIA and MIA) indicates a high degree of weathering of the source materials. The tectonic setting is the passive continental margin, while the provenance is the quartz-rich sediments of mature continental provenance, associated with a continental passive margin, intracratonic basins, or recycled orogenic provinces.


weathering, chemical maturity, provenance, felsic, tectonic setting


  1. Armstrong-Altrin, J.S., Lee, Y.I., Verma, S.P., Ramasamy, S. 2004. Geochemistry of sandstones from the upper Miocene kudankulam Formation, southern India: Implication for provenance, weathering and tectonic setting. Journal of sedimentary Research, 74(2): 285 – 297.
  2. Armstrong-Altrin, J.S., Verma, S.P. 2005. Critical evaluation of six tectonic setting discrimination diagrams using geochemical data of Neogene sediments from known tectonic settings: Sedimentary Geology, 177(1-2): 115-129.
  3. Bhatia, M. R. 1983). Plate tectonics and geochemical composition of sandstone. J. Geol., 91: 611-627.
  4. Bhatia, M. R. and Crook, K. W. 1986. Trace element characteristics of greywackes and tectonic setting discrimination of sedimentary basins. Contributions to Mineralogy and Petrology, 92: p.181-193.
  5. Bhatt, M.I. and Ghosh, S.K. 2001. Geochemistry of 2.51Ga old Rampur Group pelites, western Himalayas: Implications from their provenance and weathering. Precambrian Research, 108, 1-16.
  6. Blatt, H., Middleton G. and Murray R. 1972. Origin of sedimentary rocks; Eaglewood cliffs New Jersey Prentice-Hall. p 634.
  7. Chittleborough, D.J., 1991. Indices of weathering for soils and palaeosols formed on silicate rocks: Australian Journal of Earth Sciences, 38, 115–120.
  8. Cingolani, C.A., Manassero, M., Abre, P. 2003. Composition, provenance, and tectonic setting of Ordovician siliciclastic rocks in the San Rafael block: Southern extension of the Precordillera crustal fragment, Argentina: Journal of South American Earth Sciences, 16(1): 91-106.
  9. Condie, K.C., 1993. Chemical composition and evolution of the upper continental crust: contrasting results from surface samples and shales. Chemical Geology, 104, 1-37.
  10. Cox, R., Lowe, D.R., And Cullers, R.L. 1995. The influence of sediment recycling and basement composition on evolution of mudrock chemistry in the southwestern United States: Geochimica et CosmochimicaActa, vol. 59: p. 2919–2940.
  11. Cullers, R.L. and Podkovyrov, V.M. 2000. Geochemistry of the Mesoproterozoic Lakhanda shales in southeastern Yakutia, Russia: Implications for mineralogical and provenanace, and recyling. Precambrian Research, 104, 77-93.
  12. Das, B.K., Haake, B. 2003. Geochemistry of Rewalsar Lake sediments, Lesser Himalaya, India: Implications for source-area weathering, provenance and tectonic setting. J. Geosci., 7: p.299–312.
  13. Dickson, I.N.R. 1985. Interpreting provenance relation from detrital modes of sandstones, in Zuffa G. Gled.), provenance of Arenites: NATO ASI Series (148, D. Reidel Publishing Company. Dordrecht, 333 – 362.
  14. Dickinson, W.R., Beard, L.S., Brakenridge, G.R., Erjavec, J.L., Ferguson, R.C., Inman, K.F., Knepp, R.A., Lindberg, F.A. and Ryberg, P.T. 1983. Provenance of North American Phanerozoic sandstones in relation to tectonic setting: Geological Society of America Bulletin, 94, 222-235.;2
  15. Dickson, W.R., Suczek, C.A. 1979. Plate tectonics and sandstone compositions: American Association of petroleum Geologist, 63: 2164 – 2182.
  16. Duzgoren-Aydin, N. S., Aydin, A. and Malpas, J. 2002. Reassessment of chemical weathering indices: case study on pyroclastic rocks of Hong Kong. Engineering Geology, 63: p.99–119.
  17. Fairchild, I., Graham, H., Martin, Q., and Maurice, T. 1999. Chemical Analysis of Sedimentary Rocks in: Techniques in Sedimentology (ed. T. Maurice), p. 274-354.
  18. Farquhar, S.M., Pearce, J.K., Dawson, G.K.W., Golab, A., Sommacal, S., Kirste, D., Biddle, D., Golding, S.D. 2014. A fresh approach to investigating CO2 storage: Experimental CO2-water-rock interactions in a low-salinity reservoir system, Chemical Geology. P. 1-70.
  19. Fedo, C.M., Nesbitt, H. W. & Young, G. M. 1995. Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance. Geology, 23: 10, p.921- 924.;2
  20. Fedo, C.M., Young, G.M., Nesbitt, H.W. and Hanchar, J.M. 1997. Potassic and sodic metasomatism in the Southern Province of the Canadian Shield: Evidence from the Paleoproterozoic Serpent Formation, Huronian Supergroup. Canada Precambrian Research, 84, 17-36.
  21. Folk, R.L. 1974. Petrology of sedimentary rocks. Hemphills Austin Texas. 159pp.
  22. Gill, S., Yemane, K. 1996. Implications of a lower Pennsylvanian Ultisol for equatorial Pangean climates and early, oligotrophic, forest ecosystems. Geology, Vol. 24: No. 10, p. 905-908.;2
  23. Grunsky, E.C., Drew, L.J., Sutphin, D.M. 2009. Process recognition in multi-element soil and stream-sediment geochemical data. Appl. Geochem. 24, 1602–1616.
  24. Gu, X.X., Liu, J.M., Zheng, M.H., Tang, J.X., and Qt, L. 2002. Provenance and Tectonic setting of the Proterozoic turbidites in Hunan, South China: Geochemical Evidence: Journal of Sedimentary Research, v. 72, p. 393–407.
  25. Halamic, J., Peh, Z., Bukovec, D., Miko, S., Galovic, L. 2001. A factor model of the relationship between stream sediment geochemistry and adjacent drainage basin lithology, Medvednica Mt., Croatia. Geol. Croat. 54 (1), 37–51.
  26. Harnois, L. 1988. The C.I.W. index: a new chemical index of weathering. Sedimentary Geology, 55: p.319–322.
  27. Hendry, J. P. and Trewin, N.H. 1993. Calcite-cemented layers in Deep-marine sandstones: Lower Cretaceous Scapa field, Witch Ground Graben, North Sea. AAPG Annual Convention, New Orleans, Louisiana.
  28. Herron, M. M. 1988. Geochemical classification of terrigenous sands and shales from core or log data. Journal of Sedimentary Petrology. 58(5): p.820-829.
  29. Huntsman-Mapilaa, P., Kampunzuc, A.B., Vinkc, B., Ringrosea, S. 2005. Cryptic indicators of provenance from the geochemistry of the Okavango Delta sediments, Botswana. Sedim. Geol., 174: p.123–148.
  30. Igwe, E. O., Amoke, G. U. & Ngwu, C. N. 2013. Provenance and Tectonic Setting of Amasiri Sandstone (Turonian) in Ugep Area, Southern Benue Trough, Nigeria: Evidences from Petrography and Geochemistry. Global Journal of Science Frontier Research Environment & Earth Science. Volume 13 Issue 2 Version 1.0: 32-40.
  31. Johnsson, M.J. and Basu, A., 1993. Processes Controlling the Composition of Clastic Sediments. Geological Society of America, 284(Special Paper), 342pp.
  32. Jones, H.A. and Hockey R.D. 1964. The Geology of part of Southwestern Nigeria. Bull. Geol. Surv. Nig. 31: 101.
  33. Klemme, H.D. 1975. Geothermal gradient, heat flow and hydrocarbon recovery. In: A.G. Fisher and S. Judson (eds). Petroleum and global tectonics. Princeton University Press. p. 251-304.
  34. Kroonenberg, S.B. 1994: Effects of provenance, sorting and weathering on the geochemistry of fluvial sands from different tectonic and climatic environments: Proceedings of the 29th International Geological Congress, Part A, 69-81.
  35. Kogbe, C.A. 1976. Geology of Nigeria.Second revised edition Publ by Rockview Nig. Ltd. 538pp.
  36. Kovács, J. 2007. Chemical Weathering Intensity of the Late Cenozoic “Red Clay” Deposits in the Carpathian Basin. Geochemistry International, Vol. 45: No. 10, pp. 1056–1063.
  37. Lindsey, D.A. 1999. An Evaluation of Alternative Chemical Classifications of Sandstones. United State Geological Survey Open-File Report, 99-346: 23pp.
  38. Liu, Z., Colin, C., Huang, W., Le, K.P., Tong, S., Chen, Z., Trentesaux, A. 2007. Climaticand tectonic controls on weathering in South China and the IndochinaPeninsula: clay mineralogical and geochemical investigations from the Pearl,Red, and Mekong drainage basins. Geochem. Geophys. Geosyst., 8: Q05005.doi:10.1029/2006GC001490.
  39. Maynard, J.B., Valloni, R. and Yu, H.S. 1982. Composition of modern deep-sea sands from arc-related basins: in Leggett, J.K., eds., Trench forearc geology: sedimentation and tectonics on modern and ancient active plate margins. Geol. Soc. Lond. Spec. Pub. 10: 551–561
  40. McLennan, S.M. 1993. Weathering and global denudation. J. Geol., 101: p.295–303.
  41. McLennan, S.M., Taylor, S.R., 1991. Sedimentary rocks and crustal evolution: Tectonic setting and secular trends. Journal of Geology, 99, 1-21.
  42. McLennan, S.M., Taylor, S.R., Eriksson, K.A. 1983. Geochemistry of Archean shales from the Pilbara Supergroup, Western Australia. Geochim. Cosmochim. Acta, 47: p.1211–1222.
  43. McLennan, S.M., Hemming, S., McDaniel, D.K., Hanson, G.N., 1993. Geochemical approaches to sedimentation, provenance and tectonics. Geol. Soc. Am. Spec. Pap. 284, 21–40.
  44. Milodowski, A.E., and Zalasiewiez, J.A. 1991. Redistribution of rare-earth elements during diagenesis of turbidite / hemipelagite, mudrock sequences of Landovery age from central Wales. Geological Society of London, special Publications, 57, 101-124. Mining Geol., 154 (1): p.65-68.
  45. Mongelli, G., Cullers, R.L. and Muelheisen, S. 1996. Geochemistry of Late Cretaceous-Oligocenic shales from the Varicolori Formation, southern Apennines, Italy: implications for mineralogical, grain-size control and provenance. Eur. J. Mineral., 8: p.733–754.
  46. Nwajide, C.S., and Hoque, M. 1985. Problem of classification and maturity. Evaluation of a diagno- stically altered fluvial Sandstone. Geologic on Nujibouw, vol.64 p 67-70
  47. Muhs, D.R., Crittenden, R.C., Rosholt, J. N., Bush, C.A., and Stewart, K.C. 1987. Genesis of marine terrace soils, Barbados, West Indies: Evidence from mineralogy and Geochemistry. Earth Surface Proc. Landforms, 12: p. 605-618.
  48. Nesbitt, H.W., and Young, G.M. 1982. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature, 299: 715–717.
  49. Nesbitt, H.W., Mackovics, G., Price, R.C. 1980. Chemical processes affecting alkali sand alkaline Earth during continental weathering. Geochim. Cosmochim. Acta, 44: p.1659–1666.
  50. Nesbitt, H.W., Young, G.M., McLennan, S.M. and Keays, R.R. 1996. Effects of chemical weathering and sorting on the petrogenesis of siliclastic sediments, with implications for provenance studies. Journal of Geology, 104, 525-542.
  51. Ogbe, F.G.A. 1972. Stratigraphy of Strata Exposed in Ewekoro Quarry, Southwestern Nigeria. In: African Geology, pp 305-322.
  52. Omatsola, M.E and Adegoke O.S. 1981. Tectonic and Cretaceous stratigraphy of the Dahomey basin. Journal of Mining Geology, 154 (1): p.65-68.
  53. Omatsola, M.E. and Adegoke, O.S. 1980. Tectonic Evolution of the Dahomey basin [West Africa] and its implication in the opening of the North and South Atlantic. Broc. 26th Int. Geol. Paris pp 268.
  54. Pettijohn, F. J. 1963. Chemical composition of sandstones—excluding carbonate and volcanic sands, in Fleischer, M., ed., Data of Geochemistry, sixth edition, U. S. Geological Survey Professional Paper 440-S: 21 pp.
  55. Pettijohn, F. J. 1975. Sedimentary rocks, third edition: New York, Harper & Row: 628 pp.
  56. Pettijohn, F.J., Potter P.E and Siever R. 1972. Sand and Sandstone. New York, Springer: 618pp.
  57. Pettijohn, F.J., Potter, P.E., Siever, R., 1987. Sand and Sandstone. Springer Science+Business Media,
  58. New York, 618 pp.
  59. Potter, P.E., 1978. Petrology and chemistry of modern big river sands. The Journal of Geology, 86(4): 423–449.
  60. Ratcliffe, K.T., Morton, A.C., Ritcey, D.H. and Evenchick, C.A. 2007. Whole-rock geochemistry and heavy mineral analysis as petroleum exploration tools inthe Bowser and Sustut basins, British Columbia, Canada. Bulletin of Canadian Petroleum Geology, Vol. 55: p. 320–336.
  61. Reimann, C. and Melezhik, V. 2001. Metallogenic provinces, geochemical provinces and regional geology—what causes large-scale patterns in low density geochemical maps of the C-horizon of podzols in Arctic Europe? Appl. Geochem. 16, 963–983.
  62. Roser, B. P. and Korsch, R. J. 1986. Determination of tectonic setting of sandstone-mudstone suites using SiO2 content and K2O/Na2O ratio. J. Geol., 94: p.635-650.
  63. Roser, B. P. and Korsch, R. J. 1988. Provenance signature of sandstone-mudstone suite determined using discriminant function analysis of major element data. Chem. Geol., 67: p.119-139.
  64. Singh, M., Sharma, M., Tobschall, H. L. 2005. Weathering of the Ganga alluvial plain,northern India: implications from fluvial geochemistry of the Gomati River.Appl. Geochem., 20: p.1–21.
  65. Singh, P., 2009. Major, trace and REE geochemistry of the Ganga River sediments: influence of provenance and sedimentary processes. Chem. Geol. 266, 242–255.
  66. Suttner, L.J., Dutta, P.K.. 1986. Alluvial sandstone composition and paleoclimate. L. Framework mineralogy. Journal of sedimentary petrology, Vol. 56: p. 329-345.
  67. Taylor, S. R., and McLennan, S. M. 1985. The Continental Crust: Its Composition and Evolution: An Examination of the Geological Record Preserved in Sedimentary Rocks: Oxford, U.K., Blackwell, 328 pp.
  68. Vital, H., Stattegger, K., 2000. Major and trace elements of stream sediments fromthe lowermost Amazon River. Chem. Geol., 168: p.151–168.
  69. Whiteman, A. J.1982. Nigeria: Its petroleum geology, resources and potential, graham and trotman, London, Vol 2: 394pp.
  70. Wronkiewicz, D.J., and Condie, K.C. 1989. Geochemistry and provenance of sediments from the Pongola Supergroup, South Africa: Evidence for a 3.0-Ga-old continental Craton: Geochimica et Cosmochimica Acta, 53: 1537–1549.
  71. Wronkiewicz, D.J., Condie, K.C. 1987. Geochemistry of Archean shales from the Witwatersrand Supergroup, South Africa: source-area weathering and provenance. Geochim. Cosmochim. Acta, 51: 2401–2416.
  72. Young, S.M., Pitawala, A. and Ishiga, H. 2013. Geochemical characteristics of stream sediments, sediment fractions, soils, and basement rocks from the Mahaweli River and its catchment, Sri Lanka. Chemie der Erde 73, 357– 371.
  73. Zimmermann, U and Bahlburg, H., 2003. Provenance analysis and tectonic setting of the Ordovician clastic deposits in the southern Puna Basin, NW Argentina: Sedimentology, 50, 1079–1104.

Cite this Article:

  • BibTex
  • RIS
  • APA
  • Harvard
  • IEEE
  • MLA
  • Vancouver
  • Chicago

International Journal of Sciences is Open Access Journal.
This article is licensed under a Creative Commons Attribution 4.0 International (CC BY 4.0) License.
Author(s) retain the copyrights of this article, though, publication rights are with Alkhaer Publications.

Search Articles

Issue August 2020

Volume 9, August 2020

Table of Contents

World-wide Delivery is FREE

Share this Issue with Friends:

Submit your Paper