Quantitative Approach of the Ecological Response of Six Species Vascular Plants along an Altitudinal Gradient in Dongling Forest Mountain (Beijing)

Quantitative Approach of the Ecological Response of Six Species Vascular Plants along an Altitudinal Gradient in Dongling Forest Mountain (Beijing)

Loading document ...
Loading page ...


Author(s): MABESSIMO Cléoface Landry, Niu Shukui

Download Full PDF Read Complete Article

DOI: 10.18483/ijSci.663 344 1217 22-27 Volume 4 - Apr 2015


In the current climate change crisis, lack of detailed climate knowledge of the behavior of species and the distribution of their abundance, can be an obstacle on sustainable biodiversity conservation. The goal of our paper is to study the ecological behavior of species along an altitudinal gradient in order to predict their abundance. Six species of vascular plants, sampled in Dongling forest have been the subject of this study. The use of the Gaussian regression allowed calculating three ecological parameters including the optimum, tolerance and maximum, from which six distribution models have been designed; the expected model was the bell curve (Gaussian curve). Among the six species sampled, only Quercus liaotungensis reacted with the expected response to the abundance of its plants. Moreover, the species Acer mono, Betula platyphylla, Juglan mandshurica and Pinus tabuliformis have reacted with answers of parabola-shaped curves; However, Deutzia grandiflora was the only species to react with a totally different response of two other groups of species curve. However, the calculated ecological parameters allowed obtaining an equation for prediction of abundance for each species. Although species response curves to a gradient can take many forms, our results have highlighted that only one species reacts with the expected response. In view of the fragility of China's natural ecosystems, it is urgent that similar studies, on a large scale, can be conducted in order to determine the ecological behavior of a large number of species, to strengthen their capacity for management and conservation.


Vascular Plants, Abundance, Models, Prediction, Dongling


  1. Austin, M. P. Continuum concept, ordination methods and niche theory. Annual Review of Ecology and Systematics, 1985, 16, 39-61. http://dx.doi.org/10.1146/annurev.ecolsys.16.1.39
  2. Austin, M. P., R. B. Cunningham et P. M. Fleming, New approaches to direct gradient analysis using environmental scalars et statistical curve-fitting procedures. Vegetation, 1984, 55, 11-27. http://dx.doi.org/10.1007/bf00039976
  3. Beerling, D.J., The impact of temperature on the northern distribution limits of the introduced species Fallopia japonica and Impatiens glandulifera in north-west Europe. Journal of Biogeography, 1993, 20: 45-53. http://dx.doi.org/10.2307/2845738
  4. Chase, J.M. & Leibold, M.A., Ecological Niches. University of Chicago Press, Chicago, IL, 2003.
  5. Christophe Coudun, Approche quantitative de la réponse écologique des espèces végétales forestières à l'échelle de la France. Ecologie, environnement. ENGREF (AgroParisTech), 2005, French. .
  6. Daget, P. et M. Godron, Analyse fréquentielle de l'écologie des espèces dans les communautés. Collection d'écologie, 18, Masson, Paris, 1982. http://dx.doi.org/10.2307/2530777
  7. Diekmann, M. et J. E. Lawesson, Shifts in ecological behaviour of herbaceous forest species along a transect from northern central to north Europe. Folia Geobotanica, 1999, 34, 127-141. http://dx.doi.org/10.1007/bf02803080
  8. Dominic Chambers, Challenges in modeling the abundance of 105 tree species in eastern North America for climate change research. Department of Plant Science and McGill School of Environment Macdonald Campus of McGill University Ste-Anne-de-Bellevue, Quebec, Canada, 2011.
  9. Gates, S., Gibbons, D.W., Lack, P.C. & Fuller, R.J., Declining farmland bird species: modelling geographical patterns of abundance in Britain. In "Large-Scale Ecology and Conservation Biology", Edwards, P.J, May, R.M. & Webb, N.R. (Eds), Blackwell Scientific Publications, 1993, pp 153-177.
  10. Hammer, Ø., Harper, D.A.T., and P. D. Ryan, PAST: Paleontological Statistics Software Package
  11. for Education and Data Analysis. Palaeontologia Electronica, 2001, 4(1): 9pp.
  12. Hai-Bao Ren, Shu-Kui Niu, Lin-Yan Zhang, Ke-Ping Ma, Distribution of Vascular Plant Species Richness along an Elevational Gradient in the Dongling Mountains, Beijing, China. Journal of Integrative Plant Biology, 2006, 48 (2): 153−160. http://dx.doi.org/10.1111/j.1744-7909.2006.00153.x
  13. J. DAGET, C. LECORDIER et C. LEVEQUE, Notion de nomocénose : Ses applications en écologie. Bull. SOC. Ecol., 1972, t. III, 4, p. 448-462.
  14. Ji-hua Hou, Xiang-cheng Mi, Can-ran Liu, Ke-ping Ma, Tree competition and species coexistence in a Quercus–Betula forest in the Dongling Mountains in northern China. ACTA OECOLO G ICA 30 (2006) 117–125. http://dx.doi.org/10.1016/j.actao.2005.10.002
  15. JIN-TUN ZHANG, BIN ZHANG, MIN LI AND XUNZHI ZHU (2013). Functional diversity and conservation of Phellodendron amurensis communities in the Mountain of Beijing, China. Botanical Sciences 91 (4): 505-513.
  16. Javier Sawchik, Marc Dufrêne and Philippe Lebrun, Distribution patterns and indicator species of butterfly assemblages of wet meadows in southern Belgium. Belg. J. Zool., 2005, 135 (1): 43-52.
  17. JinzhuoWu, Wenshu Lin, Xuanyi Peng, and Weiguo Liu, A Review of Forest Resources and Forest Biodiversity Evaluation System in China. International Journal of Forestry Research. Volume 2013, Article ID 396345, 7 pages. http://dx.doi.org/10.1155/2013/396345
  18. Kearney, M., Habitat, environment and niche: what are we modelling? Oikos, 2006. 115, 186-191. http://dx.doi.org/10.1111/j.2006.0030-1299.14908.x
  19. Pakeman, R.J. & Marrs, R.H., The effect of climate change on the growth of bracken (Pteridilium aqualinum) in Britain. Journal of Applied Ecology, 1996, 33: 561-575. http://dx.doi.org/10.2307/2404985
  20. Rosalinde Van Couwenberghe, Effets des facteurs environnementaux sur la distribution et l'abondance des espèces végétales forestières aux échelles locales et régionales. Ecosystème. (AgroParisTech.), 2005, French. . .
  21. Schaffers, A. P. et K. V. Sykora, Reliability of Ellenberg indicator values for moisture, nitrogen et soil reaction: A comparison with field measurements. Journal of Vegetation Science, 2000, 11, 225-244. http://dx.doi.org/10.2307/3236802
  22. Wamelink, G. W. W., V. Joosten, H. F. Van Dobben et F. Berendse, Validity of Ellenberg indicator values judged from physicochemical field measurements. Journal of Vegetation Science, 2000, 13, 269-278. http://dx.doi.org/10.1111/j.1654-1103.2002.tb02047.x
  23. Wu Xiao-Pu, Zheng Yu, MA Ke-Ping. Population distribution and dynams of Quercus liaotungensis, Fraxinus rhynchophylla and Acer mono in Dongling Mountain, Beijing. Acta Botanica Sinica 2002, 44(2): 212-223.

Cite this Article:

International Journal of Sciences is Open Access Journal.
This article is licensed under a Creative Commons Attribution 4.0 International (CC BY 4.0) License.
Author(s) retain the copyrights of this article, though, publication rights are with Alkhaer Publications.

Search Articles

Issue October 2022

Volume 11, October 2022

Table of Contents

World-wide Delivery is FREE

Share this Issue with Friends:

Submit your Paper